

Form RLIMS63A-V1.4 03290713015593

Page 12

### SAMPLE ANALYSIS DATA SHEET

Date Printed..... 29-MAR-07 13:01

Client Name..... : Weston Solutions, Inc.

Client Ref Number....: Not Provided

Sampling Site..... Behr VOC Plume PRP Si

Release Number....: 0055729

Date Received.....: 23-MAR-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume....: Not Required

Client Sample Name: Non-Responsive

DCL Sample Name...: 07E01809 DCL Report Group..: 07E-0217-01

Matrix.... AIR

Date Sampled....: 21-MAR-07 00:00

Reporting Units...: ppb v/v

Report Basis....: ☒ As Received ☐ Dried

DCL Analysis Group: G072V01L Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type..... DB-1

> X Primary ☐ Confirmation

### Analytical Results

| Analyte                        | Date                               | MDI    |              |         |       |                  |      |
|--------------------------------|------------------------------------|--------|--------------|---------|-------|------------------|------|
| Propene                        | Analyzed                           | MDL    | Result       | Units   | Qual. | Dilution         | PQL  |
| Propene                        | 26-MAR-07 16:41                    | 0.180  | 8.6 J        | ppb v/v |       | 1                | 0.5  |
| Dichlorodifluoromethane        | 26-MAR-07 16:41                    | 0.31   | 15. <b>J</b> | µg/m³   |       | 1                | 0.86 |
| Dichlorodifluoromethane        | 26-MAR-07 16:41                    | 0.0669 | 0.49         | ppb v/v | J     | 1                | 0.5  |
| Chloromethane                  | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.33   | 2.4          | μg/m³   | J     | 1                | 2.5  |
| Chloromethane                  |                                    | 0.249  | 0.55         | ppb v/v |       | 1                | 0.5  |
| Freon 114                      | 26-MAR-07 16:41                    | 0.51   | 1.1          | μg/m³   |       | 1                | 1.0  |
| Freon 114                      | 26-MAR-07 16:41                    | 0.156  | ND           | ppb v/v |       | 1                | 0.5  |
| Vinyl Chloride                 | 26-MAR-07 16:41                    | 1.1    | ND           | µg/m³   |       | 1                | 3.5  |
| Vinyl Chloride                 | 26-MAR-07 16:41                    | 0.301  | ND           | ppb v/v |       | 1                | 0.5  |
| 1,3-Butadiene                  | 26-MAR-07 16:41                    | 0.77   | ND           | µg/m³   |       | 1                | 1.3  |
| 1,3-Butadiene                  | 26-MAR-07 16:41                    | 0.346  | ND           | ppb v/v |       | 1                | 0.5  |
| Bromomethane                   | 26-MAR-07 16:41                    | 0.77   | ND           | µg/m³   |       | 1                | 1.1  |
| Bromomethane                   | 26-MAR-07 16:41                    | 0.215  | ND           | ppb v/v |       | 1                | 0.5  |
| Chloroethane                   | 26-MAR-07 16:41                    | 0.83   | ND           | μg/m³   |       | 1                | 1.9  |
| Chloroethane                   | 26-MAR-07 16:41                    | 0.388  | ND           | ppb v/v |       | 1 .              | 0.5  |
| Freon 11                       | 26-MAR-07 16:41                    | 1.0    | ND           | μg/m³   |       | 1                | 1.3  |
| Freon 11                       | 26-MAR-07 16:41                    | 0.0921 | 0.22         | ppb v/v | J     | 1                | 0.5  |
| cis-1,2-Dichloroethene         | 26-MAR-07 16:41                    | 0.52   | 1.3          | μg/m³   | J     | 1                | 2.8  |
| cis-1,2-Dichloroethene         | 26-MAR-07 16:41                    | 0.102  | 0.18         | ppb v/v | J     | 1                | 0.5  |
| Carbon Disulfide               | 26-MAR-07 16:41                    | 0.40   | 0.71         | μg/m³   | J     | 1                | 2.0  |
| Carbon Disulfide               | 26-MAR-07 16:41                    | 0.111  | ND           | ppb v/v |       | 1                | 0.5  |
| Freon 113                      | 26-MAR-07 16:41                    | 0.35   | ND           | μg/m³   |       | 1                | 1.6  |
| Freon 113                      | 26-MAR-07 16:41                    | 0.0950 | ND           | ppb v/v |       | 1                | 0.5  |
| Acetone                        | 26-MAR-07 16:41                    | 0.73   | ND           | μg/m³   |       | 1                | 3.8  |
| Acetone                        | 26-MAR-07 16:41                    | 0.113  | 4.9 🔭        | ppb v/v |       | 1                | 0.5  |
| Methylene Chloride             | 26-MAR-07 16:41                    | 0.27   | 12. <b>5</b> | μg/m³   |       | 1                | 1.2  |
| Methylene Chloride             | 26-MAR-07 16:41                    | 0.168  | 0.37         | ppb v/v | J     | 1                | 0.5  |
| trans-1,2-Dichloroethene       | 26-MAR-07 16:41                    | 0.58   | 1.3          | µg/m³   | J     | 1                | 1.7  |
| trans-1,2-Dichloroethene       | 26-MAR-07 16:41                    | 0.118  | ND           | ppb v/v |       | 1                | 0.5  |
| 1,1-Dichloroethane             | 26-MAR-07 16:41                    | 0.47   | ND           | µg/m³   |       | 1                | 2.0  |
| 1,1-Dichloroethane             | 26-MAR-07 16:41                    | 0.116  | ND           | ppb v/v |       | 1                | 0.5  |
| Methyl t-Butyl Ether           | 26-MAR-07 16:41                    | 0.47   | ND           | µg/m³   |       | 1                | 2.0  |
| Methyl t-Butyl Ether           | 26-MAR-07 16:41                    | 0.147  | ND           | ppb v/v |       | 1                | 0.5  |
| Vinyl Acetate                  | 26-MAR-07 16:41                    | 0.53   | ND           | µg/m³   |       | 1                | 1.8  |
| Vinyl Acetate<br>Vinyl Acetate | 26-MAR-07 16:41                    | 0.133  | ND           | ppb v/v |       | 1                | 0.5  |
| 1,1-Dichloroethene             | 26-MAR-07 16:41                    | 0.47   | ND           | µg/m³   |       | 1                | 1.8  |
| 1,1-Dichloroethene             | 26-MAR-07 16:41                    | 0.109  | ND           | ppb v/v |       | 1                | 0.5  |
| 2-Butanone                     | 26-MAR-07 16:41                    | 0.43   | ND           | µg/m³   |       | ī                | 2.0  |
| 2-Butanone                     | 26-MAR-07 16:41                    | 0.182  | 0.23         | ppb v/v | J     | - <del>i</del> - | 0.5  |
|                                | 26-MAR-07 16:41                    | 0.54   | 0.68         | µg/m³   | J     | 1                | 1.5  |
| Ethyl Acetate                  | 26-MAR-07 16:41                    | 0.273  | 3.4 J        | v/v dag |       | 1 +              | 0.5  |

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com



Form RLIMS63A-V1.4 03290713015593

Page 13

### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 29-MAR-07 13:01 Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E01809 DCL Report Group..: 07E-0217-01

| Analyte                                 | Date<br>Analyzed                   | MINT   | D 1 .        |                   |               |               |            |
|-----------------------------------------|------------------------------------|--------|--------------|-------------------|---------------|---------------|------------|
| Ethyl Acetate                           | 26-MAR-07 16:41                    | MDL    | Result       | Units             | Qual.         | Dilution      | PQL        |
| Hexane                                  | 26-MAR-07 16:41                    | 0.98   | 12. <b>J</b> | P.9 / Zii         | <b>↓</b>      | 1             | 1.8        |
| Hexane                                  | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.121  | 0.68         | v/v dqq           |               | 1             | 0.5        |
| Chloroform                              | 26-MAR-07 16:41                    | 0.43   | 2.4          | µg/m³             | ļ             | 1             | 1.8        |
| Chloroform                              | 26-MAR-07 16:41<br>26-MAR-07 16:41 |        | ND           | ppb v/v           | ļ             | 1             | 0.5        |
| 1,1,1-Trichloroethane                   | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.56   | ND           | µg/m³             |               | 1             | 2.4        |
| 1,1,1-Trichloroethane                   | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.0725 | ND           | ppb v/v           |               | 1             | 0.5        |
| Carbon Tetrachloride                    | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.40   | ND           | µg/m³             |               | 1             | 2.7        |
| Carbon Tetrachloride                    | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.0657 | ND           | ppb v/v           |               | 1             | 0.5        |
| Benzene                                 | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.41   | ND           | µg/m³             |               | 1             | 3.1        |
| Benzene                                 | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.102  | 0.34         | ppb v/v           | J             | 1             | 0.5        |
| Tetrahydrofuran                         | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.33   | 1.1          | µg/m³             | J             | 1             | 1.6        |
| Tetrahydrofuran                         | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.227  | NDUJ         |                   |               | 1             | 0.5        |
| 1,2-Dichloroethane                      | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.67   | ND UJ        |                   |               | 1             | 1.5        |
| 1,2-Dichloroethane                      | 26-MAR-07 16:41<br>26-MAR-07 16:41 | 0.153  | ND           | ppb v/v           |               | 1             | 0.5        |
| Cyclohexane                             | 26-MAR-07 16:41                    | 0.62   | ND           | μg/m³             |               | 1             | 2.0        |
| Cyclohexane                             | 26-MAR-07 16:41                    | 0.120  | ND           | ppb v/v           |               | 1             | 0.5        |
| Trichloroethene                         | 26-MAR-07 16:41                    | 0.41   | ND           | μg/m³             |               | 1             | 1.7        |
| Trichloroethene                         | 26-MAR-07 16:41                    | 0.120  | 1.3          | ppb v/v           |               | 1             | 0.5        |
| 1,2-Dichloropropane                     | 26-MAR-07 16:41                    | 0.64   | 6.9          | μg/m³             |               | 1             | 2.7        |
| 1,2-Dichloropropane 1,2-Dichloropropane | 26-MAR-07 16:41                    | 0.123  | ND           | ppb v/v           |               | 1             | 0.5        |
| Bromodichloromethane                    | 26-MAR-07 16:41                    | 0.57   | ND           | μg/m³             |               | 1             | 2.3        |
| Bromodichloromethane                    | 26-MAR-07 16:41                    | 0.0779 | ND           | ppb v/v           |               | 1             | 0.5        |
|                                         | 26-MAR-07 16:41                    | 0.52   | ND           | μg/m³             |               | 1             | 3.3        |
| Heptane                                 | 26-MAR-07 16:41                    | 0.101  | 0.24         | ppb v/v           | J             | 1             | 0.5        |
| Heptane                                 | 26-MAR-07 16:41                    | 0.41   | 1.0          | ug/m³             | J             | 1             | 2.0        |
| cis-1,3-Dichloropropene                 | 26-MAR-07 16:41                    | 0.106  | ND           | v/v dqq           |               | 1             | 0.5        |
| cis-1,3-Dichloropropene                 | 26-MAR-07 16:41                    | 0.48   | ND           | µq/m³             |               | 1             | 2.3        |
| 4-Methyl-2-Pentanone                    | 26-MAR-07 16:41                    | 0.116  | ND OJ        |                   |               | 1             | 0.5        |
| 4-Methyl-2-Pentanone<br>Toluene         | 26-MAR-07 16:41                    | 0.48   | ND UJ        | µg/m³             |               | 1 +           | 2.0        |
| Toluene<br>Toluene                      | 26-MAR-07 16:41                    | 0.115  | 2.2          | ppb v/v           |               | 1             | 0.5        |
| Toluene                                 | 26-MAR-07 16:41                    | 0.43   | 8.2          | µg/m³             |               | 1             | 1.9        |
| trans-1,3-Dichloropropene               | 26-MAR-07 16:41                    | 0.130  | ND           | ppb v/v           |               | 1             | 0.5        |
| trans-1,3-Dichloropropene               | 26-MAR-07 16:41                    | 0.59   | ND           | µg/m³             |               | 1 +           | 2.3        |
| 1,1,2-Trichloroethane                   | 26-MAR-07 16:41                    | 0.0972 | ND           | ppb v/v           |               | 1             | 0.5        |
| 1,1,2-Trichloroethane                   | 26-MAR-07 16:41                    | 0.53   | ND           | µg/m³             |               | 1 +           | 2.7        |
| Tetrachloroethene                       | 26-MAR-07 16:41                    | 0.0847 | ND           | ppb v/v           |               | 1             |            |
| Tetrachloroethene                       | 26-MAR-07 16:41                    | 0.57   | ND           | nd/m3             |               | 1             | 0.5<br>3.4 |
| 2-Hexanone                              | 26-MAR-07 16:41                    | 0.136  | ND ()        | ppb v/v           |               | 1             |            |
| 2-Hexanone                              | 26-MAR-07 16:41                    | 0.56   | NDI          | ha/w <sub>3</sub> |               | 1             | 0.5        |
| Dibromochloromethane                    | 26-MAR-07 16:41                    | 0.0792 | ND           | ppb v/v           |               | $\frac{1}{1}$ | 2.0        |
| Dibromochloromethane                    | 26-MAR-07 16:41                    | 0.67   | ND           | µg/m³             |               | $\frac{1}{1}$ | 0.5        |
| 1,2-Dibromoethane                       | 26-MAR-07 16:41                    | 0.119  | ND           | ppb v/v           |               |               | 4.2        |
| 1,2-Dibromoethane                       | 26-MAR-07 16:41                    | 0.91   | ND           | hd/w <sub>3</sub> |               | 1             | 0.5        |
| Chlorobenzene                           | 26-MAR-07 16:41                    | 0.0882 | ND           | v/v daa           |               | 1             | 3.8        |
| Chlorobenzene                           | 26-MAR-07 16:41                    | 0.41   | ND           | µg/m³             |               | 1             | 0.5        |
| Ethylbenzene                            |                                    | 0.150  | ND           | ppb v/v           |               | 1             | 2.3        |
| Ethylbenzene                            | 26-MAR-07 16:41                    | 0.65   | ND           |                   |               | _1            | 0.5        |
| n,p-Xylene                              | 26-MAR-07 16:41                    | 0.213  | 0.35         | ug/m³             | <del></del> + | 1             | 2.2        |
| n,p-Xylene                              | 26-MAR-07 16:41                    | 0.92   | 1.5          | ppb v/v           | - <u>ī</u> -  | 1             | 1.0        |
| >-Xylene                                | 26-MAR-07 16:41                    | 0.113  | 0.14.7       | µg/m³             | J             | 1             | 4.3        |
| -Xylene                                 | 26-MAR-07 16:41                    | 0.113  |              | ppb v/v           | J             | 1             | 0.5        |
| Styrene                                 | 26-MAR-07 16:41                    | 0.0748 | 0.59         | ug/m³             | J             | 1             | 2.2        |
| Styrene                                 | 26-MAR-07 16:41                    | 0.0748 | 0.25         | v/v dqq           | J             | 1             | 0.5        |
| Bromoform                               | 26-MAR-07 16:41                    |        | 1.1 ]        | hd/w <sub>3</sub> | J             | 1             | 2.1        |
| Bromoform                               | 26-MAR-07 16:41                    | 0.0884 | ND           | ppb v/v           |               | 1             | 0.5        |
| ,1,2,2-Tetrachloroethane                |                                    | 0.90   | ND           | µg/m³             |               | 1             | 5.1        |
| ,1,2,2-Tetrachloroethane                | 26-MAR-07 16:41                    | 0.108  | ND           | ppb v/v           |               | 1             | 0.5        |
| Senzyl Chloride                         |                                    | 0.74   | ND           | nd/m3             |               | 1             | 3.4        |
|                                         | 120 MAIN-0/ 10:41                  | 0.136  | ND           | ppb v/v           |               | 1             | 0.5        |



Form RLIMS63A-V1.4 03290713015593

Page 14



### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 29-MAR-07 13:01

Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E01809
DCL Report Group..: 07E-0217-01

### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result        | Units             | 01121 | Dilesti                                          | 201 |
|------------------------|------------------|--------|---------------|-------------------|-------|--------------------------------------------------|-----|
| Benzyl Chloride        | 26-MAR-07 16:41  | 0.70   | ND            |                   | Qual. | Dilution                                         | PQL |
| 4-Ethyl toluene        | 26-MAR-07 16:41  | 0.0983 |               | µg/m³             |       | 1 1                                              | 2.6 |
| 4-Ethyl toluene        | 26-MAR-07 16:41  |        | ND            | ppb v/v           |       | 1 1                                              | 0.5 |
| 1,3,5-Trimethylbenzene | 26-MAR-07 16:41  | 0.48   | ND            | µg/m³             |       | 1 1                                              | 2.5 |
| 1,3,5-Trimethylbenzene |                  | 0.112  | ND            | ppb v/v           |       | 1                                                | 0.5 |
| 1,2,4-Trimethylbenzene |                  | 0.55   | ND            | μg/m³             |       | 1                                                | 2.5 |
| 1,2,4-Trimethylbenzene | 26-MAR-07 16:41  | 0.117  | 0.14 5        | ppb v/v           | J     | 1                                                | 0.5 |
| 1,3-Dichlorobenzene    | 26-MAR-07 16:41  | 0.58   | 0.69 <b>T</b> | μg/m³             | J     | 1                                                | 2.5 |
|                        | 26-MAR-07 16:41  | 0.120  | ND            | ppb v/v           |       | 1                                                | 0.5 |
| 1,3-Dichlorobenzene    | 26-MAR-07 16:41  | 0.72   | ND            | µq/m³             |       | 1 1                                              | 3.0 |
| 1,4-Dichlorobenzene    | 26-MAR-07 16:41  | 0.0987 | 0.15 <b>J</b> |                   | J     | 1 1                                              | 0.5 |
| 1,4-Dichlorobenzene    | 26-MAR-07 16:41  | 0.59   | 0.90 T        | µg/m³             | J     | <del>                                     </del> | 3.0 |
| 1,2-Dichlorobenzene    | 26-MAR-07 16:41  | 0.0851 | ND            | ppb v/v           |       | 1 1                                              |     |
| 1,2-Dichlorobenzene    | 26-MAR-07 16:41  | 0.51   | ND            | ha/w <sub>3</sub> |       | <del>                                     </del> | 0.5 |
| 1,2,4-Trichlorobenzene | 26-MAR-07 16:41  | 0.115  | ND            |                   |       | 1 1                                              | 3.0 |
| 1,2,4-Trichlorobenzene | 26-MAR-07 16:41  | 0.85   | ND            | ppb v/v           |       | 1                                                | 0.5 |
| Hexachlorobutadiene    | 26-MAR-07 16:41  | 0.119  |               | µg/m³             |       | 1                                                | 3.7 |
| Hexachlorobutadiene    | 26-MAR-07 16:41  | 1.3    | ND            | ppb v/v           |       | 11                                               | 0.5 |
|                        | 120 mm 10:41     | 1.3    | ND            | μg/m³             |       | 1                                                | 5.3 |

## Tentatively Identified Compound Results

|                                       | Date            |        |         |       |          |
|---------------------------------------|-----------------|--------|---------|-------|----------|
| Analyte (Retention Time)              | Analyzed        | Result | Units   | Qual. | Dilution |
| Isobutane (4.65)                      | 26-MAR-07 16:41 | 30.    | ppb v/v | J     | 1        |
| Butane (4.93)                         | 26-MAR-07 16:41 | 23.    | v/v dag | J     | 1 1      |
| Ethanol (5.39)                        | 26-MAR-07 16:41 | 180    | ppb v/v | J     | 1        |
| Isopropyl Alcohol(6.00) Pentane(6.26) | 26-MAR-07 16:41 | 180    | ppb v/v | J     | 1        |
| Limonene (17.59)                      | 26-MAR-07 16:41 | 3.0    | ppb v/v | J     | 1 1      |
| Elimonene (17.33)                     | 26-MAR-07 16:41 | 4.8    | ppb v/v | J     | 1        |

19 4110/07



Form RLIMS63A-V1.4 03290713015593

Page 15



### SAMPLE ANALYSIS DATA SHEET

Date Printed...... 29-MAR-07 13:01

Client Name...... Weston Solutions, Inc.

Client Ref Number...: Not Provided

Sampling Site..... Behr VOC Plume PRP Si

Release Number....: 0055729

Date Received.....: 23-MAR-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume....: Not Required

Client Sample Name: Non-Responsive

DCL Sample Name...: 07E01810 DCL Report Group..: 07E-0217-01

Matrix....: AIR

Date Sampled.....: 21-MAR-07 00:00

Reporting Units...: ppb v/v

Report Basis....:

☒ As Received ☐ Dried

DCL Analysis Group: G072V01L Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1

> X Primary ☐ Confirmation

| Analyte                     | Date                               |        |        |         | T     |          |      |
|-----------------------------|------------------------------------|--------|--------|---------|-------|----------|------|
| Propene                     | Analyzed                           | MDL    | Result | Units   | Qual. | Dilution | PQL  |
| Propene                     | 26-MAR-07 17:18                    | 0.180  | 16. J  | ppb v/v |       | 1        | 0.5  |
| Dichlorodifluoromethane     | 26-MAR-07 17:18                    | 0.31   | 27. J  | µg/m³   |       | 1        | 0.86 |
| Dichlorodifluoromethane     | 26-MAR-07 17:18<br>26-MAR-07 17:18 | 0.0669 | 1.4    | ppb v/v |       | 1        | 0.5  |
| Chloromethane               | 26-MAR-07 17:18<br>26-MAR-07 17:18 | 0.33   | 6.7    | µg/m³   |       | 1        | 2.5  |
| Chloromethane               | 26-MAR-07 17:18<br>26-MAR-07 17:18 | 0.249  | 0.52   | ppb v/v |       | 1        | 0.5  |
| Freon 114                   | 26-MAR-07 17:18<br>26-MAR-07 17:18 | 0.51   | 1.1    | μg/m³   |       | 1        | 1.0  |
| Freon 114                   | 26-MAR-07 17:18<br>26-MAR-07 17:18 | 0.156  | ND     | ppb v/v |       | 1        | 0.5  |
| Vinyl Chloride              | 26-MAR-07 17:18<br>26-MAR-07 17:18 | 1.1    | ND     | µg/m³   |       | 1        | 3.5  |
| Vinyl Chloride              | 26-MAR-07 17:18<br>26-MAR-07 17:18 | 0.301  | ND     | ppb v/v |       | 1        | 0.5  |
| 1,3-Butadiene               |                                    | 0.77   | ND     | μg/m³   |       | 1        | 1.3  |
| 1,3-Butadiene               | 26-MAR-07 17:18                    | 0.346  | ND     | ppb v/v |       | 1        | 0.5  |
| Bromomethane                | 26-MAR-07 17:18                    | 0.77   | ND     | μg/m³   |       | 1        | 1.1  |
| Bromomethane                | 26-MAR-07 17:18                    | 0.215  | ND     | ppb v/v |       | 1        | 0.5  |
| Chloroethane                | 26-MAR-07 17:18                    | 0.83   | ND     | µg/m³   |       | 1        | 1.9  |
| Chloroethane                | 26-MAR-07 17:18                    | 0.388  | ND     | ppb v/v |       | 1        | 0.5  |
| Freon 11                    | 26-MAR-07 17:18                    | 1.0    | ND     | µg/m³   |       | 1        | 1.3  |
| Freon 11                    | 26-MAR-07 17:18                    | 0.0921 | 0.24   | ppb v/v | J     | 1        | 0.5  |
| cis-1,2-Dichloroethene      | 26-MAR-07 17:18                    | 0.52   | 1.3    | μg/m³   | J     | 1        | 2.8  |
| cis-1,2-Dichloroethene      | 26-MAR-07 17:18                    | 0.102  | 0.22   | ppb v/v | J     | 1        | 0.5  |
| Carbon Disulfide            | 26-MAR-07 17:18                    | 0.40   | 0.86   | μg/m³   | J     | 1        | 2.0  |
| Carbon Disulfide            | 26-MAR-07 17:18                    | 0.111  | ND     | v/v dqq |       | 1        | 0.5  |
| Freon 113                   | 26-MAR-07 17:18                    | 0.35   | ND     | μg/m³   |       | 1        | 1.6  |
| Freon 113                   | 26-MAR-07 17:18                    | 0.0950 | ND     | ppb v/v |       | 1        | 0.5  |
| Acetone                     | 26-MAR-07 17:18                    | 0.73   | · ND   | μg/m³   |       | 1        | 3.8  |
| Acetone                     | 26-MAR-07 17:18                    | 0.113  | 12. J  | ppb v/v |       | 1        | 0.5  |
| Methylene Chloride          | 26-MAR-07 17:18                    | 0.27   | 28. J  | μg/m³   |       | 1        | 1.2  |
| Methylene Chloride          | 26-MAR-07 17:18                    | 0.168  | 0.55   | ppb v/v |       | 1        | 0.5  |
| trans-1,2-Dichloroethene    | 26-MAR-07 17:18                    | 0.58   | 1.9    | μg/m³   |       | 1        | 1.7  |
| trans-1,2-Dichloroethene    | 26-MAR-07 17:18                    | 0.118  | ND     | ppb v/v |       | 1        | 0.5  |
| 1,1-Dichloroethane          | 26-MAR-07 17:18                    | 0.47   | ND     | μg/m³   |       | 1        | 2.0  |
| 1,1-Dichloroethane          | 26-MAR-07 17:18                    | 0.116  | ND     | v/v dqq |       | 1        | 0.5  |
| Methyl t-Butyl Ether        | 26-MAR-07 17:18                    | 0.47   | ND     | µg/m³   |       | 1        | 2.0  |
| Methyl t-Butyl Ether        | 26-MAR-07 17:18                    | 0.147  | ND     | ppb v/v |       | 1        | 0.5  |
| Vinyl Acetate               | 26-MAR-07 17:18                    | 0.53   | ND     | μg/m³   |       | 1        | 1.8  |
| Vinyl Acetate Vinyl Acetate | 26-MAR-07 17:18                    | 0.133  | ND     | ppb v/v |       | 1        | 0.5  |
| l,1-Dichloroethene          | 26-MAR-07 17:18                    | 0.47   | ND     | µg/m³   |       | 1        | 1.8  |
| L,1-Dichloroethene          | 26-MAR-07 17:18                    | 0.109  | ND     | ppb v/v |       | 1        | 0.5  |
| 2-Butanone                  | 26-MAR-07 17:18                    | 0.43   | ND     | nd/m3   |       | 1        | 2.0  |
| 2-Butanone                  | 26-MAR-07 17:18                    | 0.182  | ND     | ppb v/v |       | 1        | 0.5  |
| Ethyl Acetate               | 26-MAR-07 17:18                    | 0.54   | ND     | µg/m³   |       | 1        | 1.5  |
| cmyr Acetate                | 26-MAR-07 17:18                    | 0.273  | ND     | ppb v/v |       | 1        | 0.5  |



Form RLIMS63A-V1.4 03290713015593

Page 16

### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 29-MAR-07 13:01 Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E01810 DCL Report Group..: 07E-0217-01

| Analyte                                                                   | Date                                                  |               |          |                    | T        |               |            |
|---------------------------------------------------------------------------|-------------------------------------------------------|---------------|----------|--------------------|----------|---------------|------------|
| Ethyl Acetate                                                             | Analyzed                                              | MDL           | Result   | Units              | Qual.    | Dilution      | PQL        |
| Hexane                                                                    | 26-MAR-07 17:18<br>26-MAR-07 17:18                    | 0.98          | ND       | µg/m³              |          | 1             | 1.8        |
| Hexane                                                                    | 26-MAR-07 17:18<br>26-MAR-07 17:18                    |               | 1.2      | ppb v/v            | <u> </u> | 1             | 0.5        |
| Chloroform                                                                | 26-MAR-07 17:18                                       | 0.43          | 4.3      | µg/m³              |          | 1             | 1.8        |
| Chloroform                                                                | 26-MAR-07 17:18                                       | 0.115         | ND       | ppb v/v            |          | 1             | 0.5        |
| 1,1,1-Trichloroethane                                                     | 26-MAR-07 17:18                                       | 0.0725        | ND       | μg/m³              |          | 11            | 2.4        |
| 1,1,1-Trichloroethane                                                     | 26-MAR-07 17:18                                       | 0.40          | ND       | ppb v/v            |          | 111           | 0.5        |
| Carbon Tetrachloride                                                      | 26-MAR-07 17:18                                       | 0.40          | ND       | µg/m³              |          | 1             | 2.7        |
| Carbon Tetrachloride                                                      | 26-MAR-07 17:18                                       | 0.0637        | ND<br>ND | ppb v/v            |          | 1             | 0.5        |
| Benzene                                                                   | 26-MAR-07 17:18                                       | 0.102         | 0.68     | μg/m <sup>3</sup>  |          | 1 1           | 3.1        |
| Benzene                                                                   | 26-MAR-07 17:18                                       | 0.33          | 2.2      | ppb v/v            |          | 1 1           | 0.5        |
| Tetrahydrofuran                                                           | 26-MAR-07 17:18                                       | 0.227         | NDUJ     |                    |          | 1             | 1.6        |
| Tetrahydrofuran                                                           | 26-MAR-07 17:18                                       | 0.67          | ND DJ    |                    | <u> </u> | 1 1           | 0.5        |
| 1,2-Dichloroethane                                                        | 26-MAR-07 17:18                                       | 0.153         | ND ND    | ppb v/v            | <b> </b> | 1 1           | 1.5        |
| 1,2-Dichloroethane                                                        | 26-MAR-07 17:18                                       | 0.62          | ND       | ha/w <sub>3</sub>  |          | 1             | 0.5        |
| Cyclohexane                                                               | 26-MAR-07 17:18                                       | 0.120         | ND       | pg/m³              |          | 1 1           | 2.0        |
| Cyclohexane                                                               | 26-MAR-07 17:18                                       | 0.41          | ND       | hd/w <sub>3</sub>  |          | 1             | 0.5        |
| Trichloroethene                                                           | 26-MAR-07 17:18                                       | 0.120         | 2.7      | pgb v/v            |          | 1             | 1.7        |
| Trichloroethene                                                           | 26-MAR-07 17:18                                       | 0.64          | 15.      | hd/w <sub>3</sub>  |          | 1 1           | 0.5        |
| 1,2-Dichloropropane                                                       | 26-MAR-07 17:18                                       | 0.123         | ND ND    | ppb v/v            |          | 1             | 2.7        |
| 1,2-Dichloropropane                                                       | 26-MAR-07 17:18                                       | 0.57          | ND       | hd/w <sub>3</sub>  |          |               | 0.5        |
| Bromodichloromethane                                                      | 26-MAR-07 17:18                                       | 0.0779        | ND       | ppb v/v            |          | 1 1           | 2.3        |
| Bromodichloromethane                                                      | 26-MAR-07 17:18                                       | 0.52          | ND       | nd/m3              |          | $\frac{1}{1}$ | 0.5        |
| Heptane                                                                   | 26-MAR-07 17:18                                       | 0.101         | 0.43     | ppb v/v            | J        | 1.            | 3.3        |
| Heptane                                                                   | 26-MAR-07 17:18                                       | 0.41          | 1.8      | hd/m3              | J        | 1             | 0.5        |
| cis-1,3-Dichloropropene                                                   | 26-MAR-07 17:18                                       | 0.106         | ND       | ppb v/v            |          | $\frac{1}{1}$ | 2.0        |
| cis-1,3-Dichloropropene                                                   | 26-MAR-07 17:18                                       | 0.48          | ND       | hd/w <sub>3</sub>  |          | 1 1           | 0.5        |
| 4-Methyl-2-Pentanone                                                      | 26-MAR-07 17:18                                       | 0.116         | NDIJ     |                    |          | $\frac{1}{1}$ | 2.3        |
| 4-Methyl-2-Pentanone                                                      | 26-MAR-07 17:18                                       | 0.48          | ND ()    |                    |          | 1             | 0.5<br>2.0 |
| Toluene                                                                   | 26-MAR-07 17:18                                       | 0.115         | 1.2      | ppb v/v            |          | 1             | 0.5        |
| Toluene                                                                   | 26-MAR-07 17:18                                       | 0.43          | 4.6      | nd/w3              |          | 1             | 1.9        |
| trans-1,3-Dichloropropene                                                 | 26-MAR-07 17:18                                       | 0.130         | ND       | ppb v/v            |          | 1             | 0.5        |
| trans-1,3-Dichloropropene                                                 | 26-MAR-07 17:18                                       | 0.59          | ND       | µg/m³              |          | 1             | 2.3        |
| 1,1,2-Trichloroethane                                                     | 26-MAR-07 17:18                                       | 0.0972        | ND       | ppb v/v            |          | $\frac{1}{1}$ | 0.5        |
| 1,1,2-Trichloroethane                                                     | 26-MAR-07 17:18                                       | 0.53          | ND       | µg/m³              |          | 1             | 2.7        |
| Tetrachloroethene                                                         | 26-MAR-07 17:18                                       | 0.0847        | ND       | ppb v/v            |          | $\frac{1}{1}$ | 0.5        |
| Tetrachloroethene                                                         | 26-MAR-07 17:18                                       | 0.57          | ND       | µg/m³              |          | i             | 3.4        |
| 2-Hexanone                                                                | 26-MAR-07 17:18                                       | 0.136         | ND UJ    | ppb v/v            |          | 1             | 0.5        |
| 2-Hexanone                                                                | 26-MAR-07 17:18                                       | 0.56          | NDUJ     | µg/m³              |          | 1             | 2.0        |
| Dibromochloromethane                                                      | 26-MAR-07 17:18                                       | 0.0792        | ND       | ppb v/v            |          | 1             | 0.5        |
| Dibromochloromethane                                                      | 26-MAR-07 17:18                                       | 0.67          | ND       | µg/m³              |          | 1             | 4.2        |
| 1,2-Dibromoethane                                                         | 26-MAR-07 17:18                                       | 0.119         | ND       | ppb v/v            |          | 1             | 0.5        |
| 1,2-Dibromoethane                                                         | 26-MAR-07 17:18                                       | 0.91          | ND       | µg/m³              |          | 1             | 3.8        |
| Chlorobenzene                                                             | 26-MAR-07 17:18                                       | 0.0882        | ND       | ppb v/v            |          | 1             | 0.5        |
| Chlorobenzene                                                             | 26-MAR-07 17:18                                       | 0.41          | ND       | µg/m³              |          | 1             | 2.3        |
| Ethylbenzene                                                              | 26-MAR-07 17:18                                       | 0.150         | ND       | ppb v/v            |          | 1             | 0.5        |
| Ethylbenzene                                                              | 26-MAR-07 17:18                                       | 0.65          | ND       | µg/m³              |          | 1             | 2.2        |
| n,p-Xylene                                                                | 26-MAR-07 17:18                                       | 0.213         | 0.35 ナ   | ppb v/v            | J        | 1.            | 1.0        |
| n,p-Xylene                                                                | 26-MAR-07 17:18                                       | 0.92          | 1.5 J    | µg/m³              | J        | 1             | 4.3        |
| o-Xylene                                                                  | 26-MAR-07 17:18                                       | 0.113         | 0.13 J   | ppb v/v            | J        | 1             | 0.5        |
| o-Xylene<br>Styrene                                                       | 26-MAR-07 17:18                                       | 0.49          | 0.58     | μg/m³              | J        | 1             | 2.2        |
|                                                                           | 26-MAR-07 17:18                                       | 0.0748        | 0.265    | ppb v/v            | J        | 1             | 0.5        |
| Styrene<br>Bromoform                                                      | 26-MAR-07 17:18                                       | 0.32          | 1.1 J    | µg/m³              | J        | 1             | 2.1        |
| Bromoform                                                                 | 26-MAR-07 17:18                                       | 0.0884        | ND       | ppb v/v            |          | 1             | 0.5        |
|                                                                           | 26-MAR-07 17:18                                       | 0.90          | ND       | µg/m³              |          | 1             | 5.1        |
|                                                                           | 126 MAD 07 17 101                                     | 0.108         | ND       | ppb v/v            |          |               |            |
| 1,2,2-Tetrachloroethane                                                   | 26-MAR-07 17:18                                       |               | IND      | ppp v/v i          |          | 1 1           | U.5        |
| 1,1,2,2-Tetrachloroethane<br>1,1,2,2-Tetrachloroethane<br>Senzyl Chloride | 26-MAR-07 17:18<br>26-MAR-07 17:18<br>26-MAR-07 17:18 | 0.74<br>0.136 | ND       | had/w <sub>3</sub> |          | $\frac{1}{1}$ | 0.5<br>3.4 |



Form RLIMS63A-V1.4 03290713015593

Page 17



### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 29-MAR-07 13:01 Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E01810 DCL Report Group..: 07E-0217-01

### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result        | Units             | Qual.   | Dilution | DOL |
|------------------------|------------------|--------|---------------|-------------------|---------|----------|-----|
| Benzyl Chloride        | 26-MAR-07 17:18  | 0.70   | ND            |                   | Quai.   | Dilucion | PQL |
| 4-Ethyl toluene        | 26-MAR-07 17:18  | 0.0983 | ND            | µg/m³             |         | 1 1      | 2.6 |
| 4-Ethyl toluene        | 26-MAR-07 17:18  | 0.48   |               | ppb v/v           | <b></b> | 1        | 0.5 |
| 1,3,5-Trimethylbenzene | 26-MAR-07 17:18  | 0.112  | ND            | µg/m³             |         | 1        | 2.5 |
| 1,3,5-Trimethylbenzene | 26-MAR-07 17:18  |        | ND            | ppb v/v           |         | 1        | 0.5 |
| 1,2,4-Trimethylbenzene | 26-MAR-07 17:18  | 0.55   | ND            | μg/m³             |         | 1        | 2.5 |
| 1,2,4-Trimethylbenzene |                  | 0.117  | 0.17 <b>J</b> | ppb v/v           | J       | 1        | 0.5 |
| 1,3-Dichlorobenzene    | 26-MAR-07 17:18  | 0.58   | 0.84 <b>T</b> | μg/m³             | J       | 1        | 2.5 |
| 1,3-Dichlorobenzene    | 26-MAR-07 17:18  | 0.120  | ND            | ppb v/v           |         | 1        | 0.5 |
| 1,4-Dichlorobenzene    | 26-MAR-07 17:18  | 0.72   | ND            | μg/m³             |         | 1        | 3.0 |
| 1,4-Dichlorobenzene    | 26-MAR-07 17:18  | 0.0987 | ND            | ppb v/v           |         | 1        | 0.5 |
|                        | 26-MAR-07 17:18  | 0.59   | ND            | μq/m³             |         | 1        | 3.0 |
| 1,2-Dichlorobenzene    | 26-MAR-07 17:18  | 0.0851 | ND            | ppb v/v           |         | 1 1      | 0.5 |
| 1,2-Dichlorobenzene    | 26-MAR-07 17:18  | 0.51   | ND            | ug/m³             |         | 1        |     |
| 1,2,4-Trichlorobenzene | 26-MAR-07 17:18  | 0.115  | ND            | ppb v/v           |         | 1        | 3.0 |
| 1,2,4-Trichlorobenzene | 26-MAR-07 17:18  | 0.85   | ND            | hd/w <sub>3</sub> |         | 1        | 0.5 |
| Hexachlorobutadiene    | 26-MAR-07 17:18  | 0.119  | ND            |                   |         |          | 3.7 |
| Hexachlorobutadiene    | 26-MAR-07 17:18  | 1.3    | ND            | ppb v/v           |         |          | 0.5 |
|                        | 3, 17, 10        | 4.5    | MD            | μg/m³             |         | 1        | 5.3 |

## Tentatively Identified Compound Results

| Analyte (Retention Time)     | Date<br>Analyzed                   | Result | Units   | Oual. | Dilution |
|------------------------------|------------------------------------|--------|---------|-------|----------|
| Isobutane(4.64) Butane(4.92) | 26-MAR-07 17:18                    |        | ppb v/v | J     | 1        |
| Ethanol (5.39)               | 26-MAR-07 17:18                    |        | ppb v/v | J     | 1        |
| Isopropyl Alcohol(5.99)      | 26-MAR-07 17:18<br>26-MAR-07 17:18 |        | ppb v/v | J     | 1        |
| Pentane (6.26)               | 26-MAR-07 17:18<br>26-MAR-07 17:18 |        | ppb v/v |       | 1        |

### BEHR VOC PLUME SITE DAYTON, OHIO DATA VALIDATION REPORT

**Date:** April 17, 2007

Laboratory: DataChem Laboratories, Inc. (DataChem), Salt Lake City, Utah

Laboratory SDG #/Set ID #: BEHR/07E-0228-01

Data Validation Performed By: Lisa Graczyk, Dynamac Corporation (Dynamac),

subcontractor to Weston Solutions, Inc. (Weston)

Weston Analytical Work Order #/TDD #: 20405.016.003.0121.00/S05-0612-007

This data validation report has been prepared by Dynamac, a Weston subcontractor, under the START III Region V contract. This report documents the data validation of air samples collected for the Behr VOC Plume Site that were analyzed for Volatile Organic Compounds (VOC) by U.S. Environmental Protection Agency (U.S. EPA) method TO-15. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Organic Data Review" dated October 1999.

### **VOCs in Air by U.S. EPA Method TO15**

### 1. Samples

The following table summarizes the sample for which this data validation is being conducted.

| <u>Samples</u> | <u>Lab ID</u> | <u>Matrix</u> | <u>Date</u><br><u>Collected</u> | <u>Date</u><br><u>Prepared</u> | <u>Date</u><br><u>Analyzed</u> |
|----------------|---------------|---------------|---------------------------------|--------------------------------|--------------------------------|
| Non-Responsive | 07E01851      | Air           | 03/28/07                        | NA                             | 03/30/07                       |

### 2. <u>Holding Times</u>

The sample was analyzed within the required holding time limit of 30 days from sample collection in accordance with method TO-15.

### 3. Instrument Performance Check

The instrument performance check using bromofluorobenzene (BFB) was performed within the 24-hour period for which the samples were analyzed as required for method TO-15. The BFB standard met the ion abundance criteria specified in method TO-15.

Laboratory WO #: BEHR/07E-0228-01

### 4. <u>Initial Calibration</u>

For the initial calibration, the percent relative standard deviations (%RSD) for all compounds were less than 30 percent. The average relative response factors were all greater than 0.05.

### 5. <u>Continuing Calibration</u>

The percent differences (%D) in the continuing calibration standard for all target compounds were within the control limit of less than or equal to 25 percent.

### 6. Blanks

The method blank associated with the sample was free of target compound contamination.

### 7. <u>Surrogates</u>

The 4-bromofluorobenzene surrogate spike recovery in the sample was within the quality control (QC) limits.

### 8. <u>Laboratory Control Sample (LCS)</u>

All LCS recoveries and LCS duplicate recoveries were within the laboratory-established QC limits of 70 to 130 percent recovery.

The relative percent differences between the LCS and LCS duplicate were outside the QC limits for acetone, 2-butanone, 4-methyl-2-pentanone, and 2-hexanone. Detected results for these compounds were flagged "J" as estimated.

Data Validation Report Behr VOC Plume Site DataChem Laboratories

Laboratory WO #: BEHR/07E-0228-01

### 9. <u>Internal Standard Results</u>

The internal standard area counts in the samples were within -50 percent to +100 percent of the area counts of the associated continuing calibration standard. The retention time of the internal standards did not vary more than  $\pm 30$  seconds from the retention time of the associated continuing calibration standard.

### 10. Target Compound Identification

A spot-check was performed of the mass spectra for detected compounds. The spot-check confirmed compound identification. DataChem appropriately flagged those results detected above the method detection limit but below the quantitation limit as "J" or estimated.

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0228-01

### **ATTACHMENT**

# DATACHEM LABORATORIES RESULTS SUMMARY



Form RLIMS63A-V1.4 04090708422255

Page 12



### SAMPLE ANALYSIS DATA SHEET

Date Printed...... 09-APR-07 08:42

Client Name..... Weston Solutions, Inc.

Client Ref Number...: 055729

Sampling Site.....: Behr VOC Plume PRP Si

Release Number....: 055729

Date Received.....: 30-MAR-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: Non-Responsive

DCL Sample Name...: 07E01851 DCL Report Group..: 07E-0228-01

Matrix..... AIR

Date Sampled....: 28-MAR-07 00:00

Reporting Units...: ppb v/v

Report Basis.....: ☒ As Received ☐ Dried

DCL Analysis Group: G0735007 Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type.....: DB-1

X Primary ☐ Confirmation

| Analyte                  | Date<br>Analyzed                   | MDL    | Result       | Units             | Oual.        | Dilution | 207  |
|--------------------------|------------------------------------|--------|--------------|-------------------|--------------|----------|------|
| Propene                  | 30-MAR-07 16:44                    |        | 5.6          | ppb v/v           | Qual.        |          | PQL  |
| Propene                  | 30-MAR-07 16:44                    | 0.31   | 9.7          | hd/w <sub>3</sub> | <del> </del> | 1        | 0.5  |
| Dichlorodifluoromethane  | 30-MAR-07 16:44                    | 0.0669 | 0.47         | ppb v/v           | <del> </del> | 1 1      | 0.86 |
| Dichlorodifluoromethane  | 30-MAR-07 16:44                    | 0.33   | 2.3          | ha/w <sub>3</sub> | J            | 1        | 0.5  |
| Chloromethane            | 30-MAR-07 16:44                    | 0.249  | 0.93         | bbp A\A           | J            | 1        | 2.5  |
| Chloromethane            | 30-MAR-07 16:44                    | 0.51   | 1.9          |                   |              | 1 1      | 0.5  |
| Freon 114                | 30-MAR-07 16:44                    | 0.156  | ND ND        | µg/m³             | <u> </u>     | 1        | 1.0  |
| Freon 114                | 30-MAR-07 16:44                    | 1.1    | ND           | ppb v/v           |              | 1        | 0.5  |
| Vinyl Chloride           | 30-MAR-07 16:44                    | 0.301  | ND           | µg/m³             |              | 1        | 3.5  |
| Vinyl Chloride           | 30-MAR-07 16:44                    | 0.301  | ND ND        | ppb v/v           |              | 1        | 0.5  |
| 1,3-Butadiene            | 30-MAR-07 16:44                    | 0.346  |              | hd/w3             |              | 1        | 1.3  |
| 1,3-Butadiene            | 30-MAR-07 16:44                    | 0.346  | ND           | ppb v/v           |              | 1        | 0.5  |
| Bromomethane             | 30-MAR-07 16:44                    | 0.215  | ND           | ug/m³             |              | 1        | 1.1  |
| Bromomethane             | 30-MAR-07 16:44                    | 0.213  | ND           | ppb v/v           |              | 1        | 0.5  |
| Chloroethane             | 30-MAR-07 16:44                    | 0.83   | ND           | µg/m³             |              | 1        | 1.9  |
| Chloroethane             | 30-MAR-07 16:44                    | 1.0    | ND           | ppb v/v           |              | 1        | 0.5  |
| Freon 11                 | 30-MAR-07 16:44                    |        | ND           | µg/m³             |              | 1        | 1.3  |
| Freon 11                 | 30-MAR-07 16:44                    | 0.0921 | 0.21         | ppb v/v           | J            | 1        | 0.5  |
| cis-1,2-Dichloroethene   | 30-MAR-07 16:44                    | 0.52   | 1.2          | µg/m³             | J            | 1        | 2.8  |
| cis-1,2-Dichloroethene   | 30-MAR-07 16:44                    | 0.102  | 0.54         | ppb v/v           |              | 1        | 0.5  |
| Carbon Disulfide         | 30-MAR-07 16:44<br>30-MAR-07 16:44 | 0.40   | 2.1          | µg/m³             |              | 1        | 2.0  |
| Carbon Disulfide         | 30-MAR-07 16:44                    | 0.111  | ND           | ppb v/v           |              | 1        | 0.5  |
| Freon 113                | 30-MAR-07 16:44                    | 0.35   | ND           | µg/m³             |              | 1        | 1.6  |
| Freon 113                | 30-MAR-07 16:44                    | 0.0950 | ND           | ppb v/v           |              | 1        | 0.5  |
| Acetone                  | 30-MAR-07 16:44                    | 0.73   | ND           | μg/m³             |              | 1        | 3.8  |
| Acetone                  | 30-MAR-07 16:44<br>30-MAR-07 16:44 | 0.113  | 19. <b>J</b> | ppb v/v           |              | 1        | 0.5  |
| Methylene Chloride       | 30-MAR-07 16:44<br>30-MAR-07 16:44 | 0.27   | 45. J        | µg/m³             |              | 1        | 1.2  |
| Methylene Chloride       | 30-MAR-07 16:44                    | 0.168  | ND           | v\v dqq           |              | 1        | 0.5  |
| trans-1,2-Dichloroethene | 30-MAR-07 16:44                    | 0.58   | ND           | μg/m³             |              | 1        | 1.7  |
| trans-1,2-Dichloroethene | 30-MAR-07 16:44                    | 0.118  | ND           | ppb v/v           |              | 1        | 0.5  |
| 1,1-Dichloroethane       | 30-MAR-07 16:44                    | 0.47   | ND           | μg/m³             |              | 1        | 2.0  |
| l,1-Dichloroethane       |                                    | 0.116  | ND           | ppb v/v           |              | 1        | 0.5  |
| Methyl t-Butyl Ether     | 30-MAR-07 16:44                    | 0.47   | ND           | μg/m³             |              | 1        | 2.0  |
| Methyl t-Butyl Ether     | 30-MAR-07 16:44                    | 0.147  | ND           | ppb v/v           |              | 1        | 0.5  |
| /inyl Acetate            | 30-MAR-07 16:44                    | 0.53   | ND           | μg/m³             |              | 1        | 1.8  |
| /inyl Acetate            | 30-MAR-07 16:44                    | 0.133  | ND           | ppb v/v           |              | 1        | 0.5  |
| 1,1-Dichloroethene       | 30-MAR-07 16:44                    | 0.47   | ND           | µg/m³             |              | 1        | 1.8  |
| .,1-Dichloroethene       | 30-MAR-07 16:44                    | 0.109  | ND           | ppb v/v           |              | 1        | 0.5  |
| 2-Butanone               | 30-MAR-07 16:44                    | 0.43   | ND           | ug/m³             |              | 1        | 2.0  |
| -Butanone                | 30-MAR-07 16:44                    | 0.182  | 3.5 J        | ppb v/v           |              | 1        | 0.5  |
| Cthyl Acetate            | 30-MAR-07 16:44                    | 0.54   | 10. J        | µg/m³             |              | 1        | 1.5  |
| only 1 Modelate          | 30-MAR-07 16:44                    | 0.273  | 0.75         | ppb v/v           |              | 1        | 0.5  |



Form RLIMS63A-V1.4 04090708422255

Page 13

# s072Y02K

### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 09-APR-07 08:42
Client Name....: Weston Solutions, Inc.

DCL Sample Name...: 07E01851
DCL Report Group..: 07E-0228-01

| Analyte                                 | Date<br>Analyzed | MDL    | Result | Units             | Qual.    | Dilution                                       | PQL |
|-----------------------------------------|------------------|--------|--------|-------------------|----------|------------------------------------------------|-----|
| Ethyl Acetate                           | 30-MAR-07 16:44  | 0.98   | 2.7    | ug/m³             |          | 1                                              | 1.8 |
| Hexane                                  | 30-MAR-07 16:44  | 0.121  | 0.62   | ppb v/v           | <u> </u> | 1                                              |     |
| Hexane                                  | 30-MAR-07 16:44  | 0.43   | 2.2    | µg/m³             |          | 1                                              | 0.5 |
| Chloroform                              | 30-MAR-07 16:44  | 0.115  | ND     | ppb v/v           |          | 1                                              | 1.8 |
| Chloroform                              | 30-MAR-07 16:44  | 0.56   | ND     | nd/w3             |          |                                                | 0.5 |
| 1,1,1-Trichloroethane                   | 30-MAR-07 16:44  | 0.0725 | ND     | ppb v/v           |          | 1                                              | 2.4 |
| 1,1,1-Trichloroethane                   | 30-MAR-07 16:44  | 0.40   | ND     | hd/w <sub>3</sub> | ļ        | 1                                              | 0.5 |
| Carbon Tetrachloride                    | 30-MAR-07 16:44  | 0.0657 | ND     | ppb v/v           |          | 1                                              | 2.7 |
| Carbon Tetrachloride                    | 30-MAR-07 16:44  | 0.41   | ND     |                   |          | 1                                              | 0.5 |
| Benzene                                 | 30-MAR-07 16:44  | 0.102  | 0.44   | µg/m³             |          | 1                                              | 3.1 |
| Benzene                                 | 30-MAR-07 16:44  | 0.33   | 1.4    | ppb v/v           | J        | 1                                              | 0.5 |
| Tetrahydrofuran                         | 30-MAR-07 16:44  | 0.227  |        | μg/m³             | J        | 1                                              | 1.6 |
| Tetrahydrofuran                         | 30-MAR-07 16:44  |        | ND     | ppb v/v           |          | 1                                              | 0.5 |
| 1,2-Dichloroethane                      | 30-MAR-07 16:44  | 0.67   | ND     | µg/m³             |          | 1                                              | 1.5 |
| 1,2-Dichloroethane                      | 30-MAR-07 16:44  | 0.153  | ND     | ppb v/v           |          | 1                                              | 0.5 |
| Cyclohexane                             | 30-MAR-07 16:44  | 0.62   | ND     | µg/m³             |          | 1                                              | 2.0 |
| Cyclohexane                             | 30-MAR-07 16:44  | 0.120  | ND     | ppb v/v           |          | 1                                              | 0.5 |
| Trichloroethene                         | 30-MAR-07 16:44  | 0.41   | ND     | μg/m³             |          | 1                                              | 1.7 |
| Trichloroethene                         | 30-MAR-07 16:44  | 0.120  | 3.5    | ppb v/v           |          | 1                                              | 0.5 |
| 1,2-Dichloropropane                     | 30-MAR-07 16:44  | 0.64   | 19.    | μg/m³             |          | 1                                              | 2.7 |
| 1,2-Dichloropropane 1,2-Dichloropropane | 30-MAR-07 16:44  | 0.123  | ND     | ppb v/v           |          | 1                                              | 0.5 |
| Bromodichloromethane                    | 30-MAR-07 16:44  | 0.57   | ND     | µg/m³             |          | 1                                              | 2.3 |
| Bromodichioromethane                    | 30-MAR-07 16:44  | 0.0779 | ND     | ppb v/v           |          | 1                                              | 0.5 |
| Bromodichloromethane                    | 30-MAR-07 16:44  | 0.52   | ND     | µg/m³             |          | 1                                              | 3.3 |
| Heptane                                 | 30-MAR-07 16:44  | 0.101  | 0.45   | ppb v/v           | J        | 1                                              | 0.5 |
| Heptane                                 | 30-MAR-07 16:44  | 0.41   | 1.8    | µg/m³             | J        | 1                                              | 2.0 |
| cis-1,3-Dichloropropene                 | 30-MAR-07 16:44  | 0.106  | ND     | ppb v/v           |          | 1                                              | 0.5 |
| cis-1,3-Dichloropropene                 | 30-MAR-07 16:44  | 0.48   | ND     | µg/m³             |          | 1                                              | 2.3 |
| 4-Methyl-2-Pentanone                    | 30-MAR-07 16:44  | 0.116  | ND     | ppb v/v           |          | 1 1                                            | 0.5 |
| 4-Methyl-2-Pentanone                    | 30-MAR-07 16:44  | 0.48   | ND     | µg/m³             |          | 1                                              | 2.0 |
| <u> </u>                                | 30-MAR-07 16:44  | 0.115  | 1.8    | ppb v/v           |          | 1                                              |     |
| <b>Toluene</b>                          | 30-MAR-07 16:44  | 0.43   | 6.8    | ug/m³             |          | 1                                              | 0.5 |
| trans-1,3-Dichloropropene               | 30-MAR-07 16:44  | 0.130  | ND     | ppb v/v           |          | 1                                              | 1.9 |
| trans-1,3-Dichloropropene               | 30-MAR-07 16:44  | 0.59   | ND     | hd/w <sub>3</sub> |          | 1                                              | 0.5 |
| 1,1,2-Trichloroethane                   | 30-MAR-07 16:44  | 0.0972 | ND     | ppb v/v           |          |                                                | 2.3 |
| l,1,2-Trichloroethane                   | 30-MAR-07 16:44  | 0.53   | ND     | nd/w3             |          | $\frac{1}{1}$                                  | 0.5 |
| Tetrachloroethene                       | 30-MAR-07 16:44  | 0.0847 | ND     | ppb v/v           |          | 1 1                                            | 2.7 |
| Tetrachloroethene                       | 30-MAR-07 16:44  | 0.57   | ND     | nd/m3             |          | 1                                              | 0.5 |
| 2-Hexanone                              | 30-MAR-07 16:44  | 0.136  | ND     |                   |          | 1 1                                            | 3.4 |
| 2-Hexanone                              | 30-MAR-07 16:44  | 0.56   | ND     | ppb v/v           |          | 1                                              | 0.5 |
| Dibromochloromethane                    | 30-MAR-07 16:44  | 0.0792 | ND     | µg/m³             |          | 1                                              | 2.0 |
| Dibromochloromethane                    | 30-MAR-07 16:44  | 0.67   |        | v/v dqq           |          | 1                                              | 0.5 |
| ,2-Dibromoethane                        | 30-MAR-07 16:44  | 0.119  | ND     | ug/m³             |          | 1                                              | 4.2 |
| .,2-Dibromoethane                       | 30-MAR-07 16:44  |        | ND     | v/v dag           |          | 1                                              | 0.5 |
| Chlorobenzene                           | 30-MAR-07 16:44  | 0.91   | ND     | ug/m³             |          | 1                                              | 3.8 |
| Chlorobenzene                           | 30-MAR-07 16:44  | 0.0882 | ND     | v/v dqq           |          | 1                                              | 0.5 |
| Ethylbenzene                            |                  | 0.41   | ND     | µg/m³             |          | 1                                              | 2.3 |
| Sthylbenzene                            | 30-MAR-07 16:44  | 0.150  | ND     | ppb v/v           |          | 1                                              | 0.5 |
| p-Xylene                                | 30-MAR-07 16:44  | 0.65   | ND     | μg/m³             |          | 1                                              | 2.2 |
| p-Xylene                                | 30-MAR-07 16:44  | 0.213  | 0.29   | ppb v/v           | J        | 1                                              | 1.0 |
| -Xylene                                 | 30-MAR-07 16:44  | 0.92   | 1.3    | μg/m³             | J        | 1                                              | 4.3 |
| -Xylene                                 | 30-MAR-07 16:44  | 0.113  | ND     | ppb v/v           |          | 1                                              | 0.5 |
|                                         | 30-MAR-07 16:44  | 0.49   | ND     | μg/m³             |          | 1                                              | 2.2 |
| tyrene                                  | 30-MAR-07 16:44  | 0.0748 | 0.17   | ppb v/v           | J        | 1                                              | 0.5 |
| tyrene                                  | 30-MAR-07 16:44  | 0.32   | 0.73   | µg/m³             | J        | 1                                              | 2.1 |
| romoform                                | 30-MAR-07 16:44  | 0.0884 | ND     | ppb v/v           |          | 1                                              | 0.5 |
| romoform                                | 30-MAR-07 16:44  | 0.90   | ND     | µg/m³             |          | 1                                              |     |
| ,1,2,2-Tetrachloroethane                | 30-MAR-07 16:44  | 0.108  | ND     | ppb v/v           |          | 1                                              | 5.1 |
| ,1,2,2-Tetrachloroethane                | 30-MAR-07 16:44  | 0.74   | ND     | hd/w <sub>3</sub> |          |                                                | 0.5 |
| enzyl Chloride                          | 30-MAR-07 16:44  | 0.136  | ND     | ppb v/v           |          | $\begin{array}{c c} 1 \\ \hline 1 \end{array}$ | 0.5 |



Form RLIMS63A-V1.4 04090708422255

Page 14



### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 09-APR-07 08:42 Client Name....: Weston Solutions, Inc.

DCL Sample Name...: 07E01851 DCL Report Group..: 07E-0228-01

### Analytical Results

| Qual. Dilution                                    | Por              |
|---------------------------------------------------|------------------|
| Qual: Dilucion                                    |                  |
| $\frac{1}{v}$                                     | 2.6              |
| V   1                                             | 0.5              |
| v 1                                               | 2.5              |
| <u> </u>                                          | 0.5              |
| v 1                                               | 2.5              |
| V 1 1                                             | 0.5              |
| 7 1                                               | 2.5              |
| <del>'                                     </del> | 0.5              |
| 7 1 1                                             | 3.0              |
| <del>'                                    </del>  | 0.5              |
| 7 1                                               | 3.0              |
| <del></del>                                       | 0.5              |
| $\frac{1}{1}$                                     | 3.0              |
| <u></u>                                           | 0.5              |
|                                                   | 3.7              |
| <del></del>                                       | 0.5<br>5.3       |
| 7                                                 | 1<br>1<br>1<br>1 |

## Tentatively Identified Compound Results

| Analyte(Retention Time)        | Date<br>Analyzed | Result | Units   | 01           |                |
|--------------------------------|------------------|--------|---------|--------------|----------------|
| Isobutane(4.62)                |                  |        |         | Qual.        | Dilution       |
| Butane (4.89)                  | 30-MAR-07 16:44  | 12.    | ppb v/v | J            | 1              |
|                                | 30-MAR-07 16:44  | 4.2    | ppb v/v | J            | 1              |
| Ethanol (5.39)                 | 30-MAR-07 16:44  | 24.    | ppb v/v | .T           | 1              |
| Isopropyl Alcohol(5.98)        | 30-MAR-07 16:44  | 45.    | ppb v/v | <del></del>  | <del> </del> _ |
| Pentane (6.22)                 | 30-MAR-07 16:44  |        |         | J            | 1              |
| 1,3-Butadiene, 2-methyl-(6.31) |                  | 2.8    | ppb v/v | J            | 1              |
| Pentane, 2-methyl-(7.65)       | 30-MAR-07 16:44  | 2.6    | ppb v/v | J            | 1              |
|                                | 30-MAR-07 16:44  | 2.4    | ppb v/v | J            | 1              |
| Butanal (7.75)                 | 30-MAR-07 16:44  | 2.8    | v\v dag | <del>-</del> | 1 1            |

### BEHR VOC PLUME SITE DAYTON, OHIO DATA VALIDATION REPORT

**Date:** April 10, 2007

Laboratory: DataChem Laboratories, Inc. (DataChem), Salt Lake City, Utah

Laboratory SDG #/Set ID #: BEHR/07E-0189-01

Data Validation Performed By: Lisa Graczyk, Dynamac Corporation (Dynamac),

subcontractor to Weston Solutions, Inc. (Weston)

Weston Analytical Work Order #/TDD #: 20405.016.003.0121.00/S05-0612-007

This data validation report has been prepared by Dynamac, a Weston subcontractor, under the START III Region V contract. This report documents the data validation of air samples collected for the Behr VOC Plume Site that were analyzed for Volatile Organic Compounds (VOC) by U.S. Environmental Protection Agency (U.S. EPA) method TO-15. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Organic Data Review" dated October 1999.

### **VOCs in Air by U.S. EPA Method TO15**

### 1. Samples

The following table summarizes the sample for which this data validation is being conducted.

| <u>Samples</u> | <u>Lab ID</u> | <u>Matrix</u> | <u>Date</u><br><u>Collected</u> | <u>Date</u><br><u>Prepared</u> | <u>Date</u><br><u>Analyzed</u> |
|----------------|---------------|---------------|---------------------------------|--------------------------------|--------------------------------|
| EPA-09-SS      | 07E01705      | Air           | 03/12/07                        | NA                             | 03/22/07                       |

### 2. <u>Holding Times</u>

The sample was analyzed within the required holding time limit of 30 days from sample collection in accordance with method TO-15.

### 3. Instrument Performance Check

The instrument performance check using bromofluorobenzene (BFB) was performed within the 24-hour period for which the samples were analyzed as required for method TO-15. The BFB standard met the ion abundance criteria specified in method TO-15.

Laboratory WO #: BEHR/07E-0189-01

### 4. <u>Initial Calibration</u>

The initial calibration had acceptable results. The percent relative standard deviations (%RSD) for all compounds were less than 30 percent except for acetone. The detected result for acetone was flagged "J" as estimated for this discrepancy. The average relative response factors were all greater than 0.05.

### 5. <u>Continuing Calibration</u>

The percent differences (%D) in the continuing calibration standard for all target compounds were within the control limit of less than or equal to 25 percent except for acetone, 4-methyl-2-pentanone, and 2-hexanone. For these three compounds, detected results were flagged "J" and the quantitation limits for non-detected results were flagged "UJ" as estimated.

### 6. Blanks

The method blank associated with the sample was free of target compound contamination.

### 7. Surrogates

All 4-bromofluorobenzene surrogate spike recovery for the sample was within the quality control (QC) limits.

### 8. <u>Laboratory Control Sample (LCS)</u>

All LCS recoveries and LCS duplicate recoveries were within the laboratory-established QC limits of 70 to 130 percent recovery except for propene; 1,2,4-trichlorobenzene; and hexachlorobutadiene which were detected low in the LCS standards. For these three compounds, detected results were flagged "J" and the quantitation limits for non-detected results were flagged "UJ" as estimated.

### 9. <u>Internal Standard Results</u>

The internal standard area counts were within -50 percent to +100 percent of the area counts in the associated continuing calibration standard. The retention time of the internal standards did not vary more than  $\pm 30$  seconds from the retention time of the associated continuing calibration standard.

Data Validation Report Behr VOC Plume Site DataChem Laboratories

Laboratory WO #: BEHR/07E-0189-01

### 10. Target Compound Identification

A spot-check was performed of the mass spectra for detected compounds. The spot-check confirmed compound identification. DataChem appropriately flagged those results detected above the method detection limit but below the quantitation limit as "J" or estimated.

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0189-01

### **ATTACHMENT**

# DATACHEM LABORATORIES RESULTS SUMMARY



## SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 03280714365973

Page 12



Date Printed.....: 28-MAR-07 14:36

Client Name..... : Weston Solutions, Inc.

Client Ref Number....: Not Provided

Sampling Site..... Behr VOC Plume PRP

Release Number.....: 055729

Date Received.....: 14-MAR-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL Net Weight/Volume....: Not Required

Client Sample Name: EPA-09-SS DCL Sample Name...: 07E01705 DCL Report Group..: 07E-0189-01

Matrix..... AIR

Date Sampled....: 12-MAR-07 00:00

Reporting Units...: ppb v/v

Report Basis.....: ☒ As Received ☐ Dried

DCL Analysis Group: G072V01K Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-W  $\texttt{Column Type....:} \ \texttt{DB-1}$ 

X Primary ☐ Confirmation

### Analytical Results

| Analyte                  | Date<br>Analyzed                   | MDL    | Result        | TTmib       | 0 1     |          |      |
|--------------------------|------------------------------------|--------|---------------|-------------|---------|----------|------|
| Propene                  | 22-MAR-07 17:22                    | 0.180  |               | Units       | Qual.   | Dilution |      |
| Propene                  | 22-MAR-07 17:22                    | 0.180  | 40.           | 1 1 1 1 1 1 | E       | 1        | 0.5  |
| Dichlorodifluoromethane  | 22-MAR-07 17:22                    | 0.0669 | 0.57          | M9/111      | E       | 1        | 0.86 |
| Dichlorodifluoromethane  | 22-MAR-07 17:22                    | 0.33   | 2.8           | ppb v/v     | <b></b> | 1        | 0.5  |
| Chloromethane            | 22-MAR-07 17:22                    | 0.249  | ND ND         | µg/m³       |         | 1        | 2.5  |
| Chloromethane            | 22-MAR-07 17:22                    | 0.51   | ND            | ppb v/v     |         | 1        | 0.5  |
| Freon 114                | 22-MAR-07 17:22                    | 0.156  |               | µg/m³       |         | 1        | 1.0  |
| Freon 114                | 22-MAR-07 17:22                    | 1.1    | ND            | ppb v/v     |         | 1        | 0.5  |
| Vinyl Chloride           | 22-MAR-07 17:22                    | 0.301  | ND<br>ND      | ug/m³       |         | 1        | 3.5  |
| Vinyl Chloride           | 22-MAR-07 17:22                    | 0.301  | ND            | ppb v/v     |         | 1        | 0.5  |
| 1,3-Butadiene            | 22-MAR-07 17:22                    | 0.346  |               | μg/m³       |         | 1        | 1.3  |
| 1,3-Butadiene            | 22-MAR-07 17:22                    | 0.77   | ND            | ppb v/v     |         | 1        | 0.5  |
| Bromomethane             | 22-MAR-07 17:22                    | 0.215  | ND<br>ND      | μg/m³       |         | 1        | 1.1  |
| Bromomethane             | 22-MAR-07 17:22                    | 0.213  |               | ppb v/v     |         | 1        | 0.5  |
| Chloroethane             | 22-MAR-07 17:22                    | 0.388  | ND<br>ND      | µg/m³       |         | 1        | 1.9  |
| Chloroethane             | 22-MAR-07 17:22                    | 1.0    | ND<br>ND      | ppb v/v     |         | 1        | 0.5  |
| Freon 11                 | 22-MAR-07 17:22                    | 0.0921 |               | µg/m³       |         | 1        | 1.3  |
| Freon 11                 | 22-MAR-07 17:22                    | 0.0921 | 0.36<br>2.0   | ppb v/v     | J       | 1        | 0.5  |
| cis-1,2-Dichloroethene   | 22-MAR-07 17:22                    | 0.102  |               | µg/m³       | J       | 1        | 2.8  |
| cis-1,2-Dichloroethene   | 22-MAR-07 17:22                    | 0.102  | ND            | v/v dqq     |         | 1.       | 0.5  |
| Carbon Disulfide         | 22-MAR-07 17:22                    | 0.111  | ND            | µg/m³       |         | 1        | 2.0  |
| Carbon Disulfide         | 22-MAR-07 17:22                    | 0.35   | ND            | ppb v/v     |         | 1        | 0.5  |
| Freon 113                | 22-MAR-07 17:22                    | 0.0950 | ND<br>ND      | µg/m³       |         | 1        | 1.6  |
| Freon 113                | 22-MAR-07 17:22                    | 0.73   | ND            | v/v dqq     |         | 1        | 0.5  |
| Acetone                  | 22-MAR-07 17:22                    | 0.113  |               | µg/m³       |         | 1        | 3.8  |
| Acetone                  | 22-MAR-07 17:22                    | 0.113  | 0.62 <b>J</b> | v/v dqq     |         | 1        | 0.5  |
| Methylene Chloride       | 22-MAR-07 17:22                    | 0.168  |               | hd/w3       |         | 1        | 1.2  |
| Methylene Chloride       | 22-MAR-07 17:22                    | 0.168  | 0.82          | ppb v/v     |         | 1        | 0.5  |
| trans-1,2-Dichloroethene | 22-MAR-07 17:22                    | 0.118  | 2.8           | µg/m³       |         | 1        | 1.7  |
| rans-1,2-Dichloroethene  | 22-MAR-07 17:22                    | 0.47   | ND            | ppb v/v     |         | 1        | 0.5  |
| l,1-Dichloroethane       | 22-MAR-07 17:22                    | 0.116  | ND ND         | ug/m³       |         | 1        | 2.0  |
| 1,1-Dichloroethane       | 22-MAR-07 17:22                    |        | ND            | v/v dag     |         | 1        | 0.5  |
| Methyl t-Butyl Ether     | 22-MAR-07 17:22                    | 0.47   | ND            | µg/m³       |         | 1        | 2.0  |
| Methyl t-Butyl Ether     | 22-MAR-07 17:22                    | 0.147  | ND            | ppb v/v     |         | 1        | 0.5  |
| Vinyl Acetate            | 22-MAR-07 17:22<br>22-MAR-07 17:22 |        | ND            | µg/m³       |         | 11       | 1.8  |
| Vinyl Acetate            | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.133  | ND            | ppb v/v     |         | 11       | 0.5  |
| ,1-Dichloroethene        | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.47   | ND            | ug/m³       |         | 1        | 1.8  |
| ,1-Dichloroethene        | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.109  | ND            | ppb v/v     |         | 1        | 0.5  |
| -Butanone                | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.43   | ND            | µg/m³       |         | 1        | 2.0  |
| -Butanone                | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.182  | 1.1           | ppb v/v     |         | 1        | 0.5  |
| Cthyl Acetate            | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.54   | 3.2           | µg/m³       |         | 1        | 1.5  |
|                          | 122-MAR-U/ 17:22                   | 0.273  | ND            | ppb v/v     |         | 1        | 0.5  |

Web Page: www.datachem.com E-mail: lab@datachem.com



Form RLIMS63A-V1.4 03280714365973

Page 13

### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 28-MAR-07 14:36 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E01705 DCL Report Group..: 07E-0189-01

| Analyte                         | Date                               | 107           | T        | T                 |       | T             |            |
|---------------------------------|------------------------------------|---------------|----------|-------------------|-------|---------------|------------|
| Ethyl Acetate                   | Analyzed                           | MDL           | Result   | Units             | Qual. | Dilution      | PQL        |
| Hexane                          | 22-MAR-07 17:22                    |               | ND       | µg/m³             |       | 1             | 1.8        |
| Hexane                          | 22-MAR-07 17:22                    | 0.121         | 1.2      | ppb v/v           |       | 1             | 0.5        |
| Chloroform                      | 22-MAR-07 17:22                    | 0.43          | 4.2      | µg/m³             |       | 1             | 1.8        |
| Chloroform                      | 22-MAR-07 17:22                    | 0.115         | ND       | ppb v/v           |       | 1             | 0.5        |
| 1,1,1-Trichloroethane           | 22-MAR-07 17:22                    | 0.56          | ND       | μg/m³             |       | 1             | 2.4        |
| 1,1,1-Trichloroethane           | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.0725        | 0.14     | ppb v/v           | J     | 1             | 0.5        |
| Carbon Tetrachloride            | 22-MAR-07 17:22                    | 0.40          | 0.75     | µg/m³             | J     | 1             | 2.7        |
| Carbon Tetrachloride            | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.0657        | ND       | ppb v/v           |       | 1             | 0.5        |
| Benzene                         | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.41          | ND       | μg/m³             |       | 1             | 3.1        |
| Benzene                         | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.102         | 0.33     | ppb v/v           | J     | 1             | 0.5        |
| Tetrahydrofuran                 | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.33          | 1.0      | µg/m³             | J     | 1             | 1.6        |
| Tetrahydrofuran                 | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.227         | ND       | ppb v/v           |       | 1             | 0.5        |
| 1,2-Dichloroethane              | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.67          | ND       | µg/m³             |       | 1             | 1.5        |
| 1,2-Dichloroethane              | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.153         | ND       | ppb v/v           |       | 1             | 0.5        |
| Cyclohexane                     | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.62          | ND       | μg/m³             |       | 1             | 2.0        |
| Cyclohexane                     | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.120         | 0.48     | ppb v/v           | J     | 1             | 0.5        |
| Trichloroethene                 | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.41          | 1.7      | µg/m³             | J     | 1             | 1.7        |
| Trichloroethene                 | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.120         | 0.22     | ppb v/v           | J     | 1             | 0.5        |
| 1,2-Dichloropropane             | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.64          | 1.2      | μg/m³             | J     | 1             | 2.7        |
| 1,2-Dichloropropane             | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.123         | ND       | ppb v/v           |       | 1             | 0.5        |
| Bromodichloromethane            | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.57          | ND .     | μg/m³             |       | 111           | 2.3        |
| Bromodichloromethane            | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.0779        | ND       | ppb v/v           |       | 11            | 0.5        |
| Heptane                         | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.52<br>0.101 | ND       | µg/m³             |       | 1             | 3.3        |
| Heptane                         | 22-MAR-07 17:22                    | 0.101         | 0.77     | v/v dgg           |       | 1             | 0.5        |
| cis-1,3-Dichloropropene         | 22-MAR-07 17:22                    | 0.106         | 3.2      | µg/m³             |       | 1             | 2.0        |
| cis-1,3-Dichloropropene         | 22-MAR-07 17:22                    | 0.48          | ND<br>ND | ppb v/v           |       | 1             | 0.5        |
| 4-Methyl-2-Pentanone            | 22-MAR-07 17:22                    | 0.116         | NDUT     | µg/m³             |       | 1             | 2.3        |
| 4-Methyl-2-Pentanone            | 22-MAR-07 17:22                    | 0.48          | ND ()    | F F F - 1/1       |       | 1             | 0.5        |
| Toluene                         | 22-MAR-07 17:22                    | 0.115         | 0.83     | ppb v/v           |       | 1             | 2.0        |
| Toluene                         | 22-MAR-07 17:22                    | 0.43          | 3.1      | hall m3           |       | 1             | 0.5        |
| trans-1,3-Dichloropropene       | 22-MAR-07 17:22                    | 0.130         | ND       | ppb v/v           |       | 1             | 1.9        |
| trans-1,3-Dichloropropene       | 22-MAR-07 17:22                    | 0.59          | ND       | hg/m³             |       | 1 1           | 0.5        |
| 1,1,2-Trichloroethane           | 22-MAR-07 17:22                    | 0.0972        | ND       | ppb v/v           |       | 1             | 2.3        |
| 1,1,2-Trichloroethane           | 22-MAR-07 17:22                    | 0.53          | ND       | µg/m³             |       | <del></del>   | 0.5<br>2.7 |
| Tetrachloroethene               | 22-MAR-07 17:22                    | 0.0847        | 2.7      | ppb v/v           |       | $\frac{1}{1}$ | 0.5        |
| Tetrachloroethene<br>2-Hexanone | 22-MAR-07 17:22                    | 0.57          | 18.      | hd/w <sub>3</sub> |       | $\frac{1}{1}$ | 3.4        |
| 2-nexanone<br>2-Hexanone        | 22-MAR-07 17:22                    | 0.136         | KD UJ    |                   |       | 1             | 0.5        |
| Dibromochloromethane            | 22-MAR-07 17:22                    | 0.56          | NDUJ     | µg/m³             |       | 1             | 2.0        |
| Dibromochloromethane            | 22-MAR-07 17:22                    | 0.0792        | ND       | ppb v/v           |       | 1             | 0.5        |
| 1,2-Dibromoethane               | 22-MAR-07 17:22                    | 0.67          | ND       | ug/m³             |       | 1             | 4.2        |
| 1,2-Dibromoethane               | 22-MAR-07 17:22                    | 0.119         | ND       | ppb v/v           |       | 1             | 0.5        |
| Chlorobenzene                   | 22-MAR-07 17:22                    | 0.91          | ND       | μg/m³             |       | 1             | 3.8        |
| Chlorobenzene                   | 22-MAR-07 17:22                    | 0.0882        | ND       | v/v dqq           |       | 1             | 0.5        |
| Ethylbenzene                    | 22-MAR-07 17:22                    | 0.41          | ND       | μg/m³             |       | 1             | 2.3        |
| Ethylbenzene                    | 22-MAR-07 17:22                    | 0.150         | 0.24     | ppb v/v           | J     | 1             | 0.5        |
| n,p-Xylene                      | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.65          | 1.1      | μg/m³             | J     | 1             | 2.2        |
| n,p-Xylene                      | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.213 ·       | 0.35     | ppb v/v           | J     | 1             | 1.0        |
| o-Xylene                        | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.92          | 1.5      | μg/m³             | J     | 1             | 4.3        |
| -Xylene                         | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.113         | 0.16     | v/v dqq           | J     | 1             | 0.5        |
| Styrene                         | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.49          | 0.68     | ug/m³             | J     | 1             | 2.2        |
| Styrene                         | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.0748        | ND       | v/v dqq           |       | 1             | 0.5        |
| Bromoform                       | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.32          | ND       | nd/w3             |       | 1             | 2.1        |
| Bromoform                       | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.0884        | ND       | ppb v/v           |       | 1             | 0.5        |
| .,1,2,2-Tetrachloroethane       | 22-MAR-07 17:22                    | 0.108         | ND       | µg/m³             |       | 1             | 5.1        |
| .,1,2,2-Tetrachloroethane       | 22-MAR-07 17:22                    | 0.74          | ND<br>ND | ppb v/v           |       | 1             | 0.5        |
| Benzyl Chloride                 | 22-MAR-07 17:22                    | 0.136         | ND       | ug/m³             |       | 1             | 3.4        |
|                                 |                                    | - 1 2 0       | MD       | ppb v/v           |       | 1             | 0.5        |



Form RLIMS63A-V1.4 03280714365973

Page 14



### SAMPLE ANALYSIS DATA SHEET

Date Printed..... 28-MAR-07 14:36

Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E01705 DCL Report Group..: 07E-0189-01

### Analytical Results

| Analyte                | Date<br>Analyzed                   | MDL    | Result | Units   | Qual.        | Dilution      | Dor |
|------------------------|------------------------------------|--------|--------|---------|--------------|---------------|-----|
| Benzyl Chloride        | 22-MAR-07 17:22                    | 0.70   | ND     |         | Quai.        | DITUCTOR      | PQL |
| 4-Ethyl toluene        | 22-MAR-07 17:22                    | 0.0983 | ND     | µg/m³   | ļ            | 1             | 2.6 |
| 4-Ethyl toluene        | 22-MAR-07 17:22                    | 0.48   | ND     | ppb v/v | <del> </del> | $\frac{1}{1}$ | 0.5 |
| 1,3,5-Trimethylbenzene | 22-MAR-07 17:22                    | 0.112  |        | µg/m³   |              | 1 1           | 2.5 |
| 1,3,5-Trimethylbenzene | 22-MAR-07 17:22                    | 0.55   | ND     | ppb v/v |              | 1             | 0.5 |
| 1,2,4-Trimethylbenzene | 22-MAR-07 17:22                    | 0.117  | ND     | ug/m³   |              | 1             | 2.5 |
| 1,2,4-Trimethylbenzene | 22-MAR-07 17:22<br>22-MAR-07 17:22 |        | 0.20   | ppb v/v | J            | 1             | 0.5 |
| 1,3-Dichlorobenzene    | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.58   | 1.0    | μg/m³   | J            | 1             | 2.5 |
| 1,3-Dichlorobenzene    | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.120  | ND     | ppb v/v |              | 1             | 0.5 |
| 1,4-Dichlorobenzene    | 22-MAR-07 17:22<br>22-MAR-07 17:22 | 0.72   | ND     | μg/m³   |              | 1             | 3.0 |
| 1,4-Dichlorobenzene    |                                    | 0.0987 | ND     | ppb v/v |              | 1             | 0.5 |
| 1,2-Dichlorobenzene    | 22-MAR-07 17:22                    | 0.59   | ND     | µg/m³   |              | 1             | 3.0 |
| 1,2-Dichlorobenzene    | 22-MAR-07 17:22                    | 0.0851 | ND     | ppb v/v |              | 1             | 0.5 |
|                        | 22-MAR-07 17:22                    | 0.51   | ND     | μg/m³   |              | 1             | 3.0 |
| 1,2,4-Trichlorobenzene | 22-MAR-07 17:22                    | 0.115  | C U DM | ppb v/v |              | 1             | 0.5 |
| 1,2,4-Trichlorobenzene | 22-MAR-07 17:22                    | 0.85   | TUDM   | μg/m³   |              | 1             | 3.7 |
| Hexachlorobutadiene    | 22-MAR-07 17:22                    | 0.119  | ND/JJ  | ppb v/v |              | 1             | 0.5 |
| Hexachlorobutadiene    | 22-MAR-07 17:22                    | 1.3    | ND UT  | µg/m³   |              | 1             | 5.3 |

## Tentatively Identified Compound Results

| Analyte(Retention Time)                       | Date<br>Analyzed | Result | Units   | Oual. | Dilution |
|-----------------------------------------------|------------------|--------|---------|-------|----------|
| Isobutane (4.52)                              | 22-MAR-07 17:22  | 37.    | y\v dag | J     | 1        |
| Butane (4.80)                                 | 22-MAR-07 17:22  |        | ppb v/v | J     | 1        |
| Propane, 2,2-dimethyl-(4.93)<br>Ethanol(5.26) | 22-MAR-07 17:22  |        | ppb v/v | J     | 1        |
| Pentane(6.12)                                 | 22-MAR-07 17:22  |        | ppb v/v | J     | 1        |
| Terreame (0.12)                               | 22-MAR-07 17:22  | 2.7    | v\v daa | ıΤ    | 1        |

### BEHR VOC PLUME SITE DAYTON, OHIO DATA VALIDATION REPORT

**Date:** June 6, 2007

Laboratory: DataChem Laboratories, Inc. (DataChem), Salt Lake City, Utah

Laboratory SDG #/Set ID #: BEHR/07E-0352-01

Data Validation Performed By: Lisa Graczyk, Dynamac Corporation (Dynamac),

subcontractor to Weston Solutions, Inc. (Weston)

Weston Analytical Work Order #/TDD #: 20405.016.003.0121.00/S05-0612-007

This data validation report has been prepared by Dynamac, a Weston subcontractor, under the START III Region V contract. This report documents the data validation of air samples collected for the Behr VOC Plume Site that were analyzed for Volatile Organic Compounds (VOC) by U.S. Environmental Protection Agency (U.S. EPA) method TO-15. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Organic Data Review" dated October 1999.

### **VOCs in Air by U.S. EPA Method TO15**

### 1. Samples

The following table summarizes the samples for which this data validation is being conducted.

| <u>Samples</u> | <u>Lab ID</u> | <u>Matrix</u> | <u>Date</u><br><u>Collected</u> | <u>Date</u><br><u>Prepared</u> | <u>Date</u><br><u>Analyzed</u> |
|----------------|---------------|---------------|---------------------------------|--------------------------------|--------------------------------|
| EPA-12-SS      | 07E02345      | Air           | 05/01/07                        | NA                             | 05/04/07                       |
| EPA-13-SS      | 07E02346      | Air           | 05/01/07                        | NA                             | 05/04/07                       |
| EPA-14-SS      | 07E02347      | Air           | 05/01/07                        | NA                             | 05/04/07                       |
| EPA-15-SS      | 07E02348      | Air           | 05/01/07                        | NA                             | 05/04/07                       |
| EPA-16-SS      | 07E02349      | Air           | 05/01/07                        | NA                             | 05/04/07                       |

### 2. <u>Holding Times</u>

The samples were analyzed within the required holding time limit of 30 days from sample collection in accordance with method TO-15.

### 3. Instrument Performance Check

The instrument performance check using bromofluorobenzene (BFB) was performed within the 24-hour period for which the samples were analyzed as required for method TO-15. The BFB standard met the ion abundance criteria specified in method TO-15.

Laboratory WO #: BEHR/07E-0352-01

### 4. <u>Initial Calibration</u>

For the initial calibration, the percent relative standard deviations (%RSD) for all compounds were less than 30 percent except for propene. The quantitation limits for propene were flagged "UJ" as estimated for this discrepancy. The average relative response factors were all greater than 0.05.

### 5. <u>Continuing Calibration</u>

The percent differences (%D) in the continuing calibration standard for all target compounds were within the control limit of less than or equal to 25 percent except for propene. The quantitation limits for propene were flagged "UJ" as estimated for this discrepancy.

### 6. Blanks

The method blank associated with the samples was free of target compound contamination.

### 7. <u>Surrogates</u>

The 4-bromofluorobenzene surrogate spike recoveries in the samples were within the quality control (QC) limits.

### 8. Laboratory Control Sample (LCS)

The LCS recoveries and LCS duplicate recoveries were within the laboratory-established QC limits of 70 to 130 percent recovery except for the following compounds: propene; chloromethane; vinyl chloride; 1,3-butadiene; bromomethane; and chloroethane. These compounds were all detected low. Since these compounds were not detected in the samples, the quantitation limits were flagged "UJ" as estimated for this discrepancy.

### 9. <u>Internal Standard Results</u>

The internal standard area counts in the samples were within -50 percent to +100 percent of the area counts of the associated continuing calibration standard. The retention time of the internal standards did not vary more than  $\pm 30$  seconds from the retention time of the associated continuing calibration standard.

Data Validation Report Behr VOC Plume Site DataChem Laboratories

Laboratory WO #: BEHR/07E-0352-01

### 10. Target Compound Identification

A spot-check was performed of the mass spectra for detected compounds. The spot-check confirmed compound identification. DataChem appropriately flagged those results detected above the method detection limit but below the quantitation limit as "J" or estimated.

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0352-01

### **ATTACHMENT**

# DATACHEM LABORATORIES RESULTS SUMMARY



# Form RLIMS63A-V1.4 05100710505088

Page 12



### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:50

Client Name..... Weston Solutions, Inc.

Client Ref Number...: 055729

Sampling Site..... Behr VOC Plume PRP

Release Number....: 055729

Date Received.....: 03-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.......: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-12-SS
DCL Sample Name...: 07E02345
DCL Report Group..: 07E-0352-01

Matrix..... AIR

Date Sampled....: 01-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis.....:

☒ As Received ☐ Dried

DCL Analysis Group: G074801C
Analysis Method. . : T0-15
Instrument Type. . : GC/MS V0
Instrument ID. . . : 5972-0
Column Type. . . : DB-1

X Primary

☐ Confirmation

|                          | Date            |        | T      |                                         |       | <del>,                                     </del> |       |
|--------------------------|-----------------|--------|--------|-----------------------------------------|-------|---------------------------------------------------|-------|
| Analyte                  | Analyzed        | MDL    | Result | Units                                   | Oual. | Dilution                                          | POL   |
| Propene                  | 04-MAY-07 11:47 | 0.180  | ND U]  | v/v dag                                 |       | 1                                                 | 0.5   |
| Propene                  | 04-MAY-07 11:47 | 0.31   | ND I/T | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       | 1 1                                               | 0.86  |
| Dichlorodifluoromethane  | 04-MAY-07 11:47 | 0.0669 | 0.52   | v/v dag                                 |       | 1 1                                               | 0.5   |
| Dichlorodifluoromethane  | 04-MAY-07 11:47 | 0.33   | 2.6    | ug/m³                                   |       | 1                                                 | 2.5   |
| Chloromethane            | 04-MAY-07 11:47 | 0.249  | ND UJ  |                                         |       | 1                                                 | 0.5   |
| Chloromethane            | 04-MAY-07 11:47 | 0.51   | ND IJ  | na/w3                                   |       | 1                                                 | 1.0   |
| Freon 114                | 04-MAY-07 11:47 | 0.156  | ND     | v\v dag                                 |       | 1                                                 | 0.5   |
| Freon 114                | 04-MAY-07 11:47 | 1.1    | ND     | ug/m³                                   |       | 1                                                 | 3.5   |
| Vinyl Chloride           | 04-MAY-07 11:47 | 0.301  | ND 11t | v\v dag                                 |       | 1                                                 | 0.5   |
| Vinyl Chloride           | 04-MAY-07 11:47 | 0.77   | ND U   |                                         |       | 1                                                 | 1.3   |
| 1,3-Butadiene            | 04-MAY-07 11:47 | 0.346  | ND IT  |                                         |       | 1                                                 | 0.5   |
| 1,3-Butadiene            | 04-MAY-07 11:47 | 0.77   | NDIT   | √ μα/m³                                 |       | 1                                                 | 1.1   |
| Bromomethane             | 04-MAY-07 11:47 | 0.215  | ND UF  | v\v daa                                 |       | 1                                                 | 0.5   |
| Bromomethane             | 04-MAY-07 11:47 | 0.83   | ND LOT | ua/m³                                   |       | 1                                                 | 1.9   |
| Chloroethane             | 04-MAY-07 11:47 | 0.388  | CU DN  | v\v dag                                 |       | 1                                                 | 0.5   |
| Chloroethane             | 04-MAY-07 11:47 | 1.0    | ND UT  | ug/m³                                   |       | 1                                                 | 1.3 - |
| Freon 11                 | 04-MAY-07 11:47 | 0.0921 | 0.35   | v\v daa                                 | J     | 1.                                                | 0.5   |
| Freon 11                 | 04-MAY-07 11:47 | 0.52   | 2.0    | µg/m³                                   | J     | 1                                                 | 2.8   |
| cis-1,2-Dichloroethene   | 04-MAY-07 11:47 | 0.102  | ND     | v\v daa                                 |       | 1                                                 | 0.5   |
| cis-1,2-Dichloroethene   | 04-MAY-07 11:47 | 0.40   | ND     | ug/m³                                   |       | 1                                                 | 2.0   |
| Carbon Disulfide         | 04-MAY-07 11:47 | 0.111  | ND     | v/v dag                                 |       | 1                                                 | 0.5   |
| Carbon Disulfide         | 04-MAY-07 11:47 | 0.35   | ND     | nd/w3                                   |       | 1                                                 | 1.6   |
| Freon 113                | 04-MAY-07 11:47 | 0.0950 | ND     | v\v daa                                 |       | 1                                                 | 0.5   |
| Freon 113                | 04-MAY-07 11:47 | 0.73   | ND     | ug/m³                                   |       | 1                                                 | 3.8   |
| Acetone                  | 04-MAY-07 11:47 | 0.113  | ND     | v/v dgg                                 |       | 1                                                 | 0.5   |
| Acetone                  | 04-MAY-07 11:47 | 0.27   | ND     | ug/m³                                   |       | 1                                                 | 1.2   |
| Methylene Chloride       | 04-MAY-07 11:47 | 0.168  | ND     | ppb v/v                                 |       | 1                                                 | 0.5   |
| Methylene Chloride       | 04-MAY-07 11:47 | 0.58   | ND     | ug/m³                                   |       | 1 +                                               | 1.7   |
| trans-1,2-Dichloroethene | 04-MAY-07 11:47 | 0.118  | ND     | v\v dag                                 |       | 1                                                 | 0.5   |
| trans-1,2-Dichloroethene | 04-MAY-07 11:47 | 0.47   | ND     | ug/m³                                   |       | 1                                                 | 2.0   |
| 1,1-Dichloroethane       | 04-MAY-07 11:47 | 0.116  | ND     | v/v dag                                 |       | 1                                                 | 0.5   |
| 1,1-Dichloroethane       | 04-MAY-07 11:47 | 0.47   | ND     | nd/m3                                   |       | 1                                                 | 2.0   |
| Methyl t-Butyl Ether     | 04-MAY-07 11:47 | 0.147  | ND     | v/v dag                                 |       | 1                                                 | 0.5   |
| Methyl t-Butyl Ether     | 04-MAY-07 11:47 | 0.53   | ND     | nd/w3                                   |       | 1                                                 | 1.8   |
| Vinyl Acetate            | 04-MAY-07 11:47 | 0.133  | ND     | v/v dag                                 |       | 1                                                 | 0.5   |
| Vinyl Acetate            | 04-MAY-07 11:47 | 0.47   | ND     | na/w3                                   |       | 1                                                 | 1.8   |
| 1,1-Dichloroethene       | 04-MAY-07 11:47 | 0.109  | ND     | v/v dqq                                 |       | 1                                                 | 0.5   |
| 1,1-Dichloroethene       | 04-MAY-07 11:47 | 0.43   | ND     | na/w <sub>3</sub>                       |       | 1                                                 | 2.0   |
| 2-Butanone               | 04-MAY-07 11:47 | 0.182  | ND     | v/v dag                                 |       | 1                                                 | 0.5   |
| 2-Butanone               | 04-MAY-07 11:47 | 0.54   | ND     | na/w <sub>3</sub>                       |       | 1                                                 | 1.5   |
| Ethyl Acetate            | 04-MAY-07 11:47 | 0.273  | ND     | ppb v/v                                 |       | 1                                                 | 0.5   |



## SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 05100710505088 Page 13



Date Printed.....: 10-MAY-07 10:50

Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E02345
DCL Report Group..: 07E-0352-01

|                           | Date                               | T      | ·      | 1                 | <del> </del> |                |       |
|---------------------------|------------------------------------|--------|--------|-------------------|--------------|----------------|-------|
| Analyte                   | Analyzed                           | MDL    | Result | Units             | Qual.        | Dilution       | PQL   |
| Ethyl Acetate             | 04-MAY-07 11:47                    | 0.98   | ND     | ug/m³             |              | 1              | 1.8   |
| Hexane                    | 04-MAY-07 11:47                    | 0.121  | 0.72   | v\v dag           |              | 1              | 0.5   |
| Hexane                    | 04-MAY-07 11:47                    | 0.43   | 2.5    | nd/m3             | <u> </u>     | 1 1            | 1.8   |
| Chloroform                | 04-MAY-07 11:47                    | 0.115  | ND     | v\v dqq           |              | 1 1            | 0.5   |
| Chloroform                | 04-MAY-07 11:47                    | 0.56   | ND     | ug/m³             |              | 1              | 2.4   |
| 1,1,1-Trichloroethane     | 04-MAY-07 11:47                    | 0.0725 | ND     | ppb v/v           |              | 1 1            | 0.5   |
| 1,1,1-Trichloroethane     | 04-MAY-07 11:47                    | 0.40   | ND     | hd/w <sub>3</sub> |              | 1 1            | 2.7   |
| Carbon Tetrachloride      | 04-MAY-07 11:47                    | 0.0657 | ND     | ppb v/v           | <del> </del> | 1              | 0.5   |
| Carbon Tetrachloride      | 04-MAY-07 11:47                    | 0.41   | ND     | nd/m3             |              | 1 1            | 3.1   |
| Benzene                   | 04-MAY-07 11:47                    | 0.102  | 0.36   | ppb v/v           | J            | 1              | 0.5   |
| Benzene                   | 04-MAY-07 11:47                    | 0.33   | 1.1    | hd/w3             | J            | 1 1            | 1.6   |
| Tetrahydrofuran           | 04-MAY-07 11:47                    | 0.227  | ND     | ppb v/v           | <u>°</u>     | 1              | 0.5   |
| Tetrahydrofuran           | 04-MAY-07 11:47                    | 0.67   | ND     | ug/m³             |              | 1              | 1.5   |
| 1,2-Dichloroethane        | 04-MAY-07 11:47                    | 0.153  | ND     | ppb v/v           |              | 1              | 0.5   |
| 1,2-Dichloroethane        | 04-MAY-07 11:47                    | 0.62   | ND     | nd/w <sub>3</sub> |              | 1              | 2.0   |
| Cyclohexane               | 04-MAY-07 11:47                    | 0.120  | ND     | ppb v/v           |              | 1              | 0.5   |
| Cyclohexane               | 04-MAY-07 11:47                    | 0.41   | ND     | hd/m3             |              | 1              | 1.7   |
| Trichloroethene           | 04-MAY-07 11:47                    | 0.120  | ND     | ppb v/v           |              | 1              | 0.5   |
| Trichloroethene           | 04-MAY-07 11:47                    | 0.64   | ND     | ug/m³             |              | 1              | 2.7   |
| 1,2-Dichloropropane       | 04-MAY-07 11:47                    | 0.123  | ND     | ppb v/v           |              | $\frac{1}{1}$  | 0.5   |
| 1,2-Dichloropropane       | 04-MAY-07 11:47                    | 0.57   | ND     | hd/m3             |              | 1              | 2.3   |
| Bromodichloromethane      | 04-MAY-07 11:47                    | 0.0779 | ND     | μg/m³<br>v/v dqq  |              | 1              | 0.5   |
| Bromodichloromethane      | 04-MAY-07 11:47                    | 0.52   | ND     | hd/w <sub>3</sub> |              | 1              |       |
| Heptane                   | 04-MAY-07 11:47                    | 0.101  | 0.42   | ppb v/v           | J            | 1              | 3.3   |
| Heptane                   | 04-MAY-07 11:47                    | 0.41   | 1.7    | hd/w <sub>3</sub> | J            | 1              | 0.5   |
| cis-1,3-Dichloropropene   | 04-MAY-07 11:47                    | 0.106  | ND     | ppb v/v           | <u> </u>     | 1              | 2.0   |
| cis-1,3-Dichloropropene   | 04-MAY-07 11:47                    | 0.48   | ND     | ha/w <sub>3</sub> |              | $\frac{1}{1}$  | 0.5   |
| 4-Methyl-2-Pentanone      | 04-MAY-07 11:47                    | 0.116  | ND     | v\v dag           |              | 1              | 2.3   |
| 4-Methyl-2-Pentanone      | 04-MAY-07 11:47                    | 0.48   | ND     | ha/w <sub>3</sub> |              | 1              | 0.5   |
| Toluene                   | 04-MAY-07 11:47                    | 0.115  | 0.96   | v\v dqq           |              | 1              | 2.0   |
| Toluene                   | 04-MAY-07 11:47                    | 0.43   | 3.6    | hd/w <sub>3</sub> |              | $\frac{1}{1}$  | 0.5   |
| trans-1,3-Dichloropropene | 04-MAY-07 11:47                    | 0.130  | ND     | v\v dqq           |              | 1              | 1.9   |
| trans-1,3-Dichloropropene | 04-MAY-07 11:47                    | 0.59   | ND     | hd/w <sub>3</sub> |              | 1              | 0.5   |
| 1,1,2-Trichloroethane     | 04-MAY-07 11:47                    | 0.0972 | ND     | ppb v/v           |              |                | 2.3 - |
| 1,1,2-Trichloroethane     | 04-MAY-07 11:47                    | 0.53   | ND     | hd/w <sub>3</sub> |              | $-\frac{1}{1}$ | 0.5   |
| Tetrachloroethene         | 04-MAY-07 11:47                    | 0.0847 | 0.39   | v\v daa           | J            |                | 2.7   |
| Tetrachloroethene         | 04-MAY-07 11:47                    | 0.57   | 2.6    | nd/w <sub>3</sub> | J            | 1 1            | 0.5   |
| 2-Hexanone                | 04-MAY-07 11:47                    | 0.136  | ND     | ppb v/v           | <u> </u>     | 1              | 3.4   |
| 2-Hexanone                | 04-MAY-07 11:47                    | 0.56   | ND     | hd/w <sub>3</sub> |              |                | 0.5   |
| Dibromochloromethane      | 04-MAY-07 11:47                    | 0.0792 | ND     | v\v dqq           |              | 1              | 2.0   |
| Dibromochloromethane      | 04-MAY-07 11:47                    | 0.67   | ND     | hd/m3             |              |                | 0.5   |
| 1,2-Dibromoethane         | 04-MAY-07 11:47                    | 0.119  | ND     | ppb v/v           |              | 1 +            | 4.2   |
| 1,2-Dibromoethane         | 04-MAY-07 11:47                    | 0.91   | ND     | ha/w3             |              | 1              | 0.5   |
| Chlorobenzene             | 04-MAY-07 11:47                    | 0.0882 | ND     |                   |              | 1              | 3.8   |
| Chlorobenzene             | 04-MAY-07 11:47                    | 0.41   | ND     | ppb v/v           |              | 1              | 0.5   |
| Ethylbenzene              | 04-MAY-07 11:47                    | 0.150  | 0.36   | µg/m³             |              | 1              | 2.3   |
| Ethylbenzene              | 04-MAY-07 11:47                    | 0.65   | 1.5    | ppb v/v           | J            | 1              | 0.5   |
| m,p-Xylene                | 04-MAY-07 11:47                    | 0.03   | 0.62   | µg/m³             | J            | 1 1            | 2.2   |
| m,p-Xylene                | 04-MAY-07 11:47                    | 0.92   | 2.7    | ppb v/v           | J            |                | 1.0   |
| o-Xylene                  | 04-MAY-07 11:47                    | 0.113  | 0.29   | µg/m³             | J            | 1              | 4.3   |
| o-Xylene                  | 04-MAY-07 11:47                    | 0.49   |        | ppb v/v           | - <u>J</u>   | 1              | 0.5   |
| Styrene                   | 04-MAY-07 11:47                    |        | 1.2    | nd/w3             | J            | 1              | 2.2   |
| Styrene                   | 04-MAY-07 11:47                    | 0.0748 | ND     | ppb v/v           |              | 1              | 0.5   |
| Bromoform                 | 04-MAY-07 11:47                    |        | ND     | ug/m³             |              | 1              | 2.1   |
| Bromoform                 | 04-MAY-07 11:47                    | 0.0884 | ND     | v/v dag           |              | 1              | 0.5   |
| 1,1,2,2-Tetrachloroethane | 04-MAY-07 11:47                    | 0.90   | ND     | na/w3             |              | 1              | 5.1   |
| 1,1,2,2-Tetrachloroethane |                                    | 0.108  | ND     | v/v dag           |              | 1              | 0.5   |
| Benzyl Chloride           | 04-MAY-07 11:47<br>04-MAY-07 11:47 | 0.74   | ND     | nd/w3             |              | 1              | 3.4   |
|                           | 104-MAI-0/ 11:4/                   | 0.136  | ND     | ppb v/v           |              | 1              | 0.5   |



### Form RLIMS63A-V1.4 05100710505088

Page 14



### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:50

Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02345 DCL Report Group..: 07E-0352-01

### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Qual.       | Dilution | PQL |
|------------------------|------------------|--------|--------|---------|-------------|----------|-----|
| Benzyl Chloride        | 04-MAY-07 11:47  | 0.70   | ND     | µg/m³   |             | 1 1      | 2.6 |
| 4-Ethyl toluene        | 04-MAY-07 11:47  | 0.0983 | 0.14   | v\v dag | J           | 1 1      | 0.5 |
| 4-Ethyl toluene        | 04-MAY-07 11:47  | 0.48   | 0.66   | ug/m³   | J           | 1 1      | 2.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 11:47  | 0.112  | 0.15   | ppb v/v | J           | 1 1      | 0.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 11:47  | 0.55   | 0.72   | µg/m³   | J           | 1 1      | 2.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 11:47  | 0.117  | 0.50   | ppb v/v |             | 1 1      | 0.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 11:47  | 0.58   | 2.5    | ua/m³   |             | 1 1      | 2.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 11:47  | 0.120  | ND     | v\v daa |             | 1 1      | 0.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 11:47  | 0.72   | ND     | ug/m³   |             | 1        | 3.0 |
| 1,4-Dichlorobenzene    | 04-MAY-07 11:47  | 0.0987 | ND     | v/v dqq |             | 1 1      | 0.5 |
| 1,4-Dichlorobenzene    | 04-MAY-07 11:47  | 0.59   | ND     | nd/m3   | <del></del> | 1 1      | 3.0 |
| 1,2-Dichlorobenzene    | 04-MAY-07 11:47  | 0.0851 | ND     | v\v dqq |             | 1 1      | 0.5 |
| 1,2-Dichlorobenzene    | 04-MAY-07 11:47  | 0.51   | ND     | ug/m³   |             | 1 1      | 3.0 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 11:47  | 0.115  | ND     | ppb v/v |             | 1 1      | 0.5 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 11:47  | 0.85   | ND     | nd/w3   |             | 1 1      | 3.7 |
| Hexachlorobutadiene    | 04-MAY-07 11:47  | 0.119  | ND     | v\v daa | *******     | 1 1      | 0.5 |
| Hexachlorobutadiene    | 04-MAY-07 11:47  | 1.3    | ND     | nd/m3   |             | 1 1      | 5.3 |

### Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
| Unknown fluorocarbon(4.51)  | 04-MAY-07 11:47  | 3.2    | v\v dag | J     | 1        |
| Isobutane(4.66)             | 04-MAY-07 11:47  | 5.2    | v/v dag | J     | 1        |
| Butane (4.94)               | 04-MAY-07 11:47  | 2.8    | v/v dag | J     | 1        |
| Ethanol(5.50)               | 04-MAY-07 11:47  | 3.7    | ppb v/v | J     | 1 1      |
| Unknown fluorocarbon(13.78) | 04-MAY-07 11:47  | 26.    | ppb v/v | J     | 1        |



### Form RLIMS63A-V1.4 05100710505088

Page 15

### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 10-MAY-07 10:50

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: 055729

Sampling Site..... Behr VOC Plume PRP

Release Number....: 055729

Date Received.....: 03-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-13-SS DCL Sample Name...: 07E02346 DCL Report Group..: 07E-0352-01

Matrix....: AIR

Date Sampled....: 01-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis.....: ☒ As Received ☐ Dried

DCL Analysis Group: G074801C Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type.....: DB-1

X Primary ☐ Confirmation

### Analytical Results

| Analyte                  | Date<br>Analyzed | MDL    | Result | Units             | Qual.       | Dilution                                         | POL  |
|--------------------------|------------------|--------|--------|-------------------|-------------|--------------------------------------------------|------|
| Propene                  | 04-MAY-07 12:57  | 0.180  | NDUT   | v/v dgg           | Quai.       | 1                                                | ~~   |
| Propene                  | 04-MAY-07 12:57  | 0.31   | ND UJ  |                   |             | 1 1                                              | 0.5  |
| Dichlorodifluoromethane  | 04-MAY-07 12:57  | 0.0669 | 0.46   | ppb v/v           | J           | $\frac{1}{1}$                                    | 0.86 |
| Dichlorodifluoromethane  | 04-MAY-07 12:57  | 0.33   | 2.3    | na/w <sub>3</sub> | J           | 1 1                                              | 0.5  |
| Chloromethane            | 04-MAY-07 12:57  | 0.249  | ND UJ  | ppb v/v           | J           | $\frac{1}{1}$                                    | 2.5  |
| Chloromethane            | 04-MAY-07 12:57  | 0.51   | ND UJ  |                   | <del></del> | 1 1                                              | 0.5  |
| Freon 114                | 04-MAY-07 12:57  | 0.156  | ND ND  | μg/m³             | <b></b>     | <del>                                     </del> | 1.0  |
| Freon 114                | 04-MAY-07 12:57  | 1.1    | ND     | ha/w <sub>3</sub> | <b> </b>    | 1                                                | 0.5  |
| Vinyl Chloride           | 04-MAY-07 12:57  | 0.301  | TUDIA  | μg/m³             |             |                                                  | 3.5  |
| Vinyl Chloride           | 04-MAY-07 12:57  | 0.77   | ND UJ  |                   |             | 1                                                | 0.5  |
| 1,3-Butadiene            | 04-MAY-07 12:57  | 0.346  | TO DI  | μg/m³             |             | 1                                                | 1.3  |
| 1,3-Butadiene            | 04-MAY-07 12:57  | 0.77   | ND DT  |                   |             | 1                                                | 0.5  |
| Bromomethane             | 04-MAY-07 12:57  | 0.215  | ND UJ  | ppb v/v           |             | 1                                                | 1.1  |
| Bromomethane             | 04-MAY-07 12:57  | 0.83   | ND UT  | ha\w <sub>3</sub> |             | 1                                                | 0.5  |
| Chloroethane             | 04-MAY-07 12:57  | 0.388  | TI, DN | v\v daa           |             | 1                                                | 1.9  |
| Chloroethane             | 04-MAY-07 12:57  | 1.0    | ND UJ  | ha/w <sub>3</sub> |             | 1                                                | 0.5  |
| Freon 11                 | 04-MAY-07 12:57  | 0.0921 | 0.22   | ppb v/v           | J           | 1                                                | 1.3  |
| Freon 11                 | 04-MAY-07 12:57  | 0.52   | 1.2    |                   | J           | 1                                                | 0.5  |
| cis-1,2-Dichloroethene   | 04-MAY-07 12:57  | 0.102  | ND     | μg/m³             | U U         | 1                                                | 2.8  |
| cis-1,2-Dichloroethene   | 04-MAY-07 12:57  | 0.40   | ND     | ha/w <sub>3</sub> |             | 1 1                                              | 0.5  |
| Carbon Disulfide         | 04-MAY-07 12:57  | 0.111  | ND     | ν\ν dag           |             | 1                                                | 2.0  |
| Carbon Disulfide         | 04-MAY-07 12:57  | 0.35   | ND     | na/w3             |             | 1                                                | 0.5  |
| Freon 113                | 04-MAY-07 12:57  | 0.0950 | ND     | νν daa            |             | 1                                                | 1.6  |
| Freon 113                | 04-MAY-07 12:57  | 0.0330 | ND ND  |                   |             | 1                                                | 0.5  |
| Acetone                  | 04-MAY-07 12:57  | 0.113  | ND     | µg/m³             |             | 1                                                | 3.8  |
| Acetone                  | 04-MAY-07 12:57  | 0.113  | ND     | ppb v/v           |             | 1                                                | 0.5  |
| Methylene Chloride       | 04-MAY-07 12:57  | 0.168  | ND     |                   |             | 1                                                | 1.2  |
| Methylene Chloride       | 04-MAY-07 12:57  | 0.58   | ND     | ppb v/v           |             | 1                                                | 0.5  |
| trans-1,2-Dichloroethene | 04-MAY-07 12:57  | 0.118  | ND     | μg/m³             |             | 1                                                | 1.7  |
| trans-1,2-Dichloroethene | 04-MAY-07 12:57  | 0.47   | ND     | ppb v/v           |             | 1                                                | 0.5  |
| 1,1-Dichloroethane       | 04-MAY-07 12:57  | 0.116  | ND     | ug/m³             |             | 1                                                | 2.0  |
| 1,1-Dichloroethane       | 04-MAY-07 12:57  | 0.47   | ND ND  | ppb v/v           |             | 1                                                | 0.5  |
| Methyl t-Butyl Ether     | 04-MAY-07 12:57  | 0.147  |        | ug/m³             |             | 1.                                               | 2.0  |
| Methyl t-Butyl Ether     | 04-MAY-07 12:57  | 0.147  | ND     | ppb v/v           |             |                                                  | 0.5  |
| Vinyl Acetate            | 04-MAY-07 12:57  | 0.133  | ND     | µg/m³             |             |                                                  | 1.8  |
| Vinyl Acetate            | 04-MAY-07 12:57  | 0.133  | ND     | ppb v/v           |             | 1                                                | 0.5  |
| 1,1-Dichloroethene       | 04-MAY-07 12:57  | 0.47   | ND     | µg/m³             |             | 1                                                | 1.8  |
| 1,1-Dichloroethene       | 04-MAY-07 12:57  | 0.109  | ND     | v/v dag           |             | 1                                                | 0.5  |
| 2-Butanone               | 04-MAY-07 12:57  | 0.43   | ND     | μg/m³             |             | 1                                                | 2.0  |
| 2-Butanone               | 04-MAY-07 12:57  | 0.182  | ND     | ppb v/v           |             | 1                                                | 0.5  |
| Ethyl Acetate            | 04-MAY-07 12:57  |        | ND     | na/w3             |             | 1                                                | 1.5  |
|                          | U4-MAI-U/ 12:5/  | 0.273  | ND     | v/v dqq           |             | 1                                                | 0.5  |

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com

E-mail: lab@datachem.com

17 6/6/07 015



### SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 05100710505088

Page 16



Date Printed.....: 10-MAY-07 10:50 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02346 DCL Report Group..: 07E-0352-01

|                           | Date              | <del></del> | ·          |                   |              |               |     |
|---------------------------|-------------------|-------------|------------|-------------------|--------------|---------------|-----|
| Analyte                   | Analyzed          | MDL         | Result     | Units             | Qual.        | Dilution      | DOL |
| Ethyl Acetate             | 04-MAY-07 12:57   | 0.98        | ND         | nd/w3             | Quai.        | 1             | PQL |
| Hexane                    | 04-MAY-07 12:57   | 0.121       | ND         | py dag            |              |               | 1.8 |
| Hexane                    | 04-MAY-07 12:57   | 0.43        | ND         | hd/w <sub>3</sub> |              | 1 1           | 0.5 |
| Chloroform                | 04-MAY-07 12:57   | 0.115       | ND         | ppb v/v           |              | 1 1           | 1.8 |
| Chloroform                | 04-MAY-07 12:57   | 0.56        | ND         | nd/m3             | <del> </del> | 1 1           | 0.5 |
| 1,1,1-Trichloroethane     | 04-MAY-07 12:57   | 0.0725      | ND         | ppb v/v           |              | $\frac{1}{1}$ | 2.4 |
| 1,1,1-Trichloroethane     | 04-MAY-07 12:57   | 0.40        | ND         | hd/w <sub>3</sub> |              | 1 1           | 0.5 |
| Carbon Tetrachloride      | 04-MAY-07 12:57   | 0.0657      | ND         | ppb v/v           | <del> </del> | $\frac{1}{1}$ | 2.7 |
| Carbon Tetrachloride      | 04-MAY-07 12:57   | 0.41        | ND         | hd/w <sub>3</sub> | <del> </del> | 1 1           | 0.5 |
| Benzene                   | 04-MAY-07 12:57   | 0.102       | 0.19       | ppb v/v           | J            | 1 1           | 3.1 |
| Benzene                   | 04-MAY-07 12:57   | 0.33        | 0.62       | hd/w <sub>3</sub> | J            | 1 1           | 0.5 |
| Tetrahydrofuran           | 04-MAY-07 12:57   | 0.227       | ND         | ppb v/v           | J            | 1 1           | 1.6 |
| Tetrahydrofuran           | 04-MAY-07 12:57   | 0.67        | ND         | ha/w <sub>3</sub> |              | 1 1           | 0.5 |
| 1,2-Dichloroethane        | 04-MAY-07 12:57   | 0.153       | ND         |                   |              | 1             | 1.5 |
| 1,2-Dichloroethane        | 04-MAY-07 12:57   | 0.62        | ND         | ppb v/v           |              | 1 1           | 0.5 |
| Cyclohexane               | 04-MAY-07 12:57   | 0.120       | ND         | µg/m³             |              | 1             | 2.0 |
| Cyclohexane               | 04-MAY-07 12:57   | 0.41        | ND         | ppb v/v           |              | 1             | 0.5 |
| Trichloroethene           | 04-MAY-07 12:57   | 0.120       | ND         | µg/m³             |              | 1             | 1.7 |
| Trichloroethene           | 04-MAY-07 12:57   | 0.120       | ND<br>ND   | ppb v/v           |              | 1             | 0.5 |
| 1,2-Dichloropropane       | 04-MAY-07 12:57   | 0.123       | ND         | µg/m³             |              | 1             | 2.7 |
| 1,2-Dichloropropane       | 04-MAY-07 12:57   | 0.123       | ND         | ppb v/v           |              | 1             | 0.5 |
| Bromodichloromethane      | 04-MAY-07 12:57   | 0.0779      | ND         | µg/m³             |              | 1             | 2.3 |
| Bromodichloromethane      | 04-MAY-07 12:57   | 0.52        | ND         | ppb v/v           |              | 1             | 0.5 |
| Heptane                   | 04-MAY-07 12:57   | 0.101       |            | µg/m³             |              | 1             | 3.3 |
| Heptane                   | 04-MAY-07 12:57   | 0.41        | 0.16       | ppb v/v           | J            | 1             | 0.5 |
| cis-1,3-Dichloropropene   | 04-MAY-07 12:57   | 0.106       | ND         | µg/m³             | J            | 1             | 2.0 |
| cis-1,3-Dichloropropene   | 04-MAY-07 12:57   | 0.48        | ND         | ppb v/v           |              | 1             | 0.5 |
| 4-Methyl-2-Pentanone      | 04-MAY-07 12:57   | 0.116       | ND<br>ND   | ug/m³             |              | 1             | 2.3 |
| 4-Methyl-2-Pentanone      | 04-MAY-07 12:57   | 0.48        | ND         | ppb v/v           |              | 1             | 0.5 |
| Toluene                   | 04-MAY-07 12:57   | 0.115       | 0.42       | µg/m³             |              | 1             | 2.0 |
| Toluene                   | 04-MAY-07 12:57   | 0.43        | 1.6        | ppb v/v           | J            | 1 1           | 0.5 |
| trans-1,3-Dichloropropene | 04-MAY-07 12:57   | 0.130       | ND ND      | µg/m³             | J            | 1             | 1.9 |
| trans-1,3-Dichloropropene | 04-MAY-07 12:57   | 0.59        | ND         | v\v dqq           |              | 1             | 0.5 |
| 1,1,2-Trichloroethane     | 04-MAY-07 12:57   | 0.0972      | ND         | µg/m³             |              | 1             | 2.3 |
| 1,1,2-Trichloroethane     | 04-MAY-07 12:57   | 0.53        | ND         | ppb v/v           |              | 1             | 0.5 |
| Tetrachloroethene         | 04-MAY-07 12:57   | 0.0847      | 1.6        | μg/m³             |              | 1             | 2.7 |
| Tetrachloroethene         | 04-MAY-07 12:57   | 0.57        | 11.        | ppb v/v           |              | 1             | 0.5 |
| 2-Hexanone                | 04-MAY-07 12:57   | 0.136       | ND ND      | μg/m³             |              | 1             | 3.4 |
| 2-Hexanone                | 04-MAY-07 12:57   | 0.56        | ND         | ppb v/v           |              | 1             | 0.5 |
| Dibromochloromethane      | 04-MAY-07 12:57   | 0.0792      | ND         | µg/m³             |              | 1             | 2.0 |
| Dibromochloromethane      | 04-MAY-07 12:57   | 0.67        | ND         | ppb v/v           |              |               | 0.5 |
| 1,2-Dibromoethane         | 04-MAY-07 12:57   | 0.119       | ND         | µg/m³             |              | 1             | 4.2 |
| 1,2-Dibromoethane         | 04-MAY-07 12:57   | 0.91        | ND         | ppb v/v           |              | 1             | 0.5 |
| Chlorobenzene             | 04-MAY-07 12:57   | 0.0882      | ND         | µg/m³             |              | 1             | 3.8 |
| Chlorobenzene             | 04-MAY-07 12:57   | 0.41        |            | ppb v/v           |              |               | 0.5 |
| Ethylbenzene              | 04-MAY-07 12:57   | 0.150       | ND<br>0.18 | µg/m³             |              | 1             | 2.3 |
| Ethylbenzene              | 04-MAY-07 12:57   |             |            | v/v dqq           | J            | 1             | 0.5 |
| m,p-Xylene                | 04-MAY-07 12:57   | 0.65        | 0.76       | ug/m³             | J            | 1             | 2.2 |
| m,p-Xylene                | 04-MAY-07 12:57   | 0.92        |            | v/v dag           | <u>J</u>     | 1             | 1.0 |
| o-Xylene                  | 04-MAY-07 12:57   | 0.113       | 1.2        | µg/m³             | J            | 1             | 4.3 |
| o-Xylene                  | 04-MAY-07 12:57   | 0.113       | 0.13       | v/v dgg           | J            | 1             | 0.5 |
| Styrene                   | 04-MAY-07 12:57   |             | 0.55       | µg/m³             | J            | 1             | 2.2 |
| Styrene                   | 04-MAY-07 12:57   | 0.0748      | ND         | v/v dqq           |              | 1             | 0.5 |
| Bromoform                 | 04-MAY-07 12:57   |             | ND         | nd/m3             |              | 1             | 2.1 |
| Bromoform                 | 04-MAY-07 12:57   | 0.0884      | ND         | ppb v/v           |              | 1             | 0.5 |
| 1,1,2,2-Tetrachloroethane | 04-MAY-07 12:57   | 0.90        | ND         | µg/m³             |              | 1             | 5.1 |
| 1,1,2,2-Tetrachloroethane | 04-MAY-07 12:57   | 0.108       | ND         | . ppb v/v         |              | 11            | 0.5 |
| Benzyl Chloride           | 04-MAY-07 12:57   |             | ND         | µg/m³             |              | 1             | 3.4 |
|                           | 102 2221 0/ 12:3/ | 0.136       | ND         | ppb v/v           |              | 1             | 0.5 |



Form RLIMS63A-V1.4 05100710505088

Page 17



### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 10-MAY-07 10:50 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02346 DCL Report Group..: 07E-0352-01

### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Oual. | Dilution                                         | PQL |
|------------------------|------------------|--------|--------|---------|-------|--------------------------------------------------|-----|
| Benzyl Chloride        | 04-MAY-07 12:57  | 0.70 . | ND     | nd/m3   | ~     | 1                                                | 2.6 |
| 4-Ethyl toluene        | 04-MAY-07 12:57  | 0.0983 | ND     | v\v dag |       | 1 1                                              | 0.5 |
| 4-Ethyl toluene        | 04-MAY-07 12:57  | 0.48   | ND     | ug/m³   |       | 1 1                                              | 2.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 12:57  | 0.112  | ND     | ppb v/v |       | 1 1                                              | 0.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 12:57  | 0.55   | ND     | ug/m³   |       | 1 1                                              | 2.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 12:57  | 0.117  | 0.19   | v/v dqq | J     | 1 1                                              | 0.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 12:57  | 0.58   | 0.91   | na/m3   | J     | <del>                                     </del> | 2.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 12:57  | 0.120  | ND     | ppb v/v |       | 1 1                                              | 0.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 12:57  | 0.72   | ND     | ua/m³   |       | 1 1                                              | 3.0 |
| 1,4-Dichlorobenzene    | 04-MAY-07 12:57  | 0.0987 | ND     | ppb v/v |       | 1                                                | 0.5 |
| 1,4-Dichlorobenzene    | 04-MAY-07 12:57  | 0.59   | ND     | ug/m³   |       | 1 1                                              | 3.0 |
| 1,2-Dichlorobenzene    | 04-MAY-07 12:57  | 0.0851 | ND     | v/v dqq |       | 1                                                | 0.5 |
| 1,2-Dichlorobenzene    | 04-MAY-07 12:57  | 0.51   | ND     | µq/m³   |       | 1                                                | 3.0 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 12:57  | 0.115  | ND     | v/v daa |       |                                                  | 0.5 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 12:57  | 0.85   | ND     | ug/m³   |       | 1                                                | 3.7 |
| Hexachlorobutadiene    | 04-MAY-07 12:57  | 0.119  | ND     | v/v daa |       | 1 1                                              | 0.5 |
| Hexachlorobutadiene    | 04-MAY-07 12:57  | 1.3    | ND     | µg/m³   |       | 1                                                | 5.3 |

### Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Oual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
| Unknown fluorocarbon(13.79) | 04-MAY-07 12:57  | 20.    | ppb v/v | J     | 1        |



### Form RLIMS63A-V1.4 05100710505088

Page 18



### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:50

Client Name.....: Weston Solutions, Inc.

Client Ref Number...: 055729

Sampling Site..... Behr VOC Plume PRP

Release Number....: 055729

Date Received.....: 03-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-14-SS
DCL Sample Name...: 07E02347
DCL Report Group..: 07E-0352-01

Matrix.... AIR

Date Sampled....: 01-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....: X As Received Dried

DCL Analysis Group: G074801C
Analysis Method...: T0-15
Instrument Type...: GC/MS V0
Instrument ID....: 5972-0
Column Type....: DB-1

Primary
 Confirmation

### Analytical Results

| Propene Propene Dichlorodifluoromethane Dichlorodifluoromethane | 04-MAY-07 14:07<br>04-MAY-07 14:07 | 0.180  |        | Units             | Qual. | Dilution         | POL        |
|-----------------------------------------------------------------|------------------------------------|--------|--------|-------------------|-------|------------------|------------|
| Dichlorodifluoromethane                                         | 04-MAY-07 14:07                    | 0.100  | ND IJ  | v\v daa           |       | 1                | 0.5        |
| Dichlorodifluoromethane Dichlorodifluoromethane                 |                                    | 0.31   | ND LIT | na/w3             |       | 1 1              | 0.86       |
| Dichlorodifluoromethane                                         | 04-MAY-07 14:07                    | 0.0669 | 0.49   | ppb v/v           | J     | 1                | 0.5        |
|                                                                 | 04-MAY-07 14:07                    | 0.33   | 2.4    | μg/m³             | J     | 1 1              | 2.5        |
| Chloromethane                                                   | 04-MAY-07 14:07                    | 0.249  | NDUJ   | v/v dqq           |       | 1 1              | 0.5        |
| Chloromethane                                                   | 04-MAY-07 14:07                    | 0.51   | NDIXT  | μg/m³             |       | 1                | 1.0        |
| Freon 114                                                       | 04-MAY-07 14:07                    | 0.156  | ND     | v/v dag           |       | $\frac{1}{1}$    | 0.5        |
| Freon 114                                                       | 04-MAY-07 14:07                    | 1.1    | ND     | na/m³             |       | 1 1              | 3.5        |
| Vinyl Chloride                                                  | 04-MAY-07 14:07                    | 0.301  | ND UJ  | v\v daa           |       | 1 1              | 0.5        |
| Vinyl Chloride                                                  | 04-MAY-07 14:07                    | 0.77   | ND UJ  | ug/m³             |       | 1                | 1.3        |
| 1,3-Butadiene                                                   | 04-MAY-07 14:07                    | 0.346  | ND I/T | v\v daa           |       | 1                | 0.5        |
| 1,3-Butadiene                                                   | 04-MAY-07 14:07                    | 0.77   | ND U   | nd/w3             |       | 1                | 1.1        |
| Bromomethane                                                    | 04-MAY-07 14:07                    | 0.215  | NDIJ   | v\v daa           |       | 1                | 0.5        |
| Bromomethane                                                    | 04-MAY-07 14:07                    | 0.83   | ND ()J | ug/m³             |       | 1                | 1.9        |
| Chloroethane                                                    | 04-MAY-07 14:07                    | 0.388  | NDIJ   | v\v dgg           |       | 1                | 0.5        |
| Chloroethane                                                    | 04-MAY-07 14:07                    | 1.0    | ND (J  | na/w3             |       | 1                | 1.3 -      |
| Freon 11                                                        | 04-MAY-07 14:07                    | 0.0921 | 0.26   | v\v daa           | J     | 1                | 0.5        |
| Freon 11                                                        | 04-MAY-07 14:07                    | 0.52   | 1.5    | nd/m3             | J     | 1                | 2.8        |
| cis-1,2-Dichloroethene                                          | 04-MAY-07 14:07                    | 0.102  | 0.86   | v\v daa           |       | 1                | 0.5        |
| cis-1,2-Dichloroethene                                          | 04-MAY-07 14:07                    | 0.40   | 3.4    | na/w3             |       | 1                | 2.0        |
| Carbon Disulfide                                                | 04-MAY-07 14:07                    | 0.111  | 1.1    | v\v dag           |       | 1                | 0.5        |
| Carbon Disulfide                                                | 04-MAY-07 14:07                    | 0.35   | 3.4    | nd/w3             |       | 1                | 1.6        |
| Freon 113                                                       | 04-MAY-07 14:07                    | 0.0950 | 0.18   | v\v dag           | J     | 1                | 0.5        |
| Freon 113                                                       | 04-MAY-07 14:07                    | 0.73   | 1.3    | nd/w3             | J     | 1                | 3.8        |
| Acetone                                                         | 04-MAY-07 14:07                    | 0.113  | 13.    | v/v dag           |       | 1                | 0.5        |
| Acetone                                                         | 04-MAY-07 14:07                    | 0.27   | 32.    | na/w3             |       | 1                | 1.2        |
| Methylene Chloride                                              | 04-MAY-07 14:07                    | 0.168  | ND     | v/v dag           |       | 1                | 0.5        |
| Methylene Chloride                                              | 04-MAY-07 14:07                    | 0.58   | ND     | na/w <sub>3</sub> |       | <del>- 1</del> + | 1.7        |
| trans-1,2-Dichloroethene                                        | 04-MAY-07 14:07                    | 0.118  | 0.83   | ppb v/v           |       | 1                | 0.5        |
| trans-1,2-Dichloroethene                                        | 04-MAY-07 14:07                    | 0.47   | 3.3    | na/w <sub>3</sub> |       | 1                | 2.0        |
| 1,1-Dichloroethane                                              | 04-MAY-07 14:07                    | 0.116  | 0.68   | v\v daa           |       | 1                | 0.5        |
| 1,1-Dichloroethane                                              | 04-MAY-07 14:07                    | 0.47   | 2.8    | hd/w <sub>3</sub> |       | $\frac{1}{1}$    | 2.0        |
| Methyl t-Butyl Ether                                            | 04-MAY-07 14:07                    | 0.147  | ND     | ppb v/v           |       | $-\frac{1}{1}$   | 0.5        |
| Methyl t-Butyl Ether                                            | 04-MAY-07 14:07                    | 0.53   | ND     | hd/w <sub>3</sub> |       |                  |            |
| Vinyl Acetate                                                   | 04-MAY-07 14:07                    | 0.133  | ND     | v\v dag           |       | $\frac{1}{1}$    | 1.8<br>0.5 |
| Vinyl Acetate                                                   | 04-MAY-07 14:07                    | 0.47   | ND     | nd/w <sub>3</sub> |       | 1 +              | 1.8        |
| 1,1-Dichloroethene                                              | 04-MAY-07 14:07                    | 0.109  | ND     | v\v daa           |       | 1 +              | 0.5        |
| l,1-Dichloroethene                                              | 04-MAY-07 14:07                    | 0.43   | ND     | nd/w <sub>3</sub> |       | 1 +              |            |
| 2-Butanone                                                      | 04-MAY-07 14:07                    | 0.182  | ND     | v\v daa           |       | 1                | 2.0        |
| 2-Butanone                                                      | 04-MAY-07 14:07                    | 0.54   | ND     | ha\w <sub>3</sub> |       | $\frac{1}{1}$    | 0.5        |
| Ethyl Acetate                                                   | 04-MAY-07 14:07                    | 0.273  | ND     | ν/ν dag           |       | 1                | 1.5<br>0.5 |

10/6/07 018



Form RLIMS63A-V1.4 05100710505088

Page 19



### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:50
Client Name....: Weston Solutions, Inc.

DCL Sample Name...: 07E02347
DCL Report Group..: 07E-0352-01

| Analyte                                      | Date                               | MOT    | D 3:   |          |       |          |     |
|----------------------------------------------|------------------------------------|--------|--------|----------|-------|----------|-----|
|                                              | Analyzed                           | MDL    | Result | Units    | Qual. | Dilution | PQL |
| Ethyl Acetate Hexane                         | 04-MAY-07 14:07                    | 0.98   | ND     | ug/m³    |       | 1 1      | 1.8 |
| Hexane                                       | 04-MAY-07 14:07                    | 0.121  | 1.7    | ppb v/v  |       | 1 1      | 0.5 |
| Chloroform                                   | 04-MAY-07 14:07                    | 0.43   | 6.1    | µg/m³    |       | 1        | 1.8 |
| Chloroform                                   | 04-MAY-07 14:07                    | 0.115  | 0.65   | v/v dag  |       | 1 1      | 0.5 |
| 1,1,1-Trichloroethane                        | 04-MAY-07 14:07                    | 0.56   | 3.2    | µg/m³    |       | 1        | 2.4 |
| 1,1,1-Trichloroethane                        | 04-MAY-07 14:07                    | 0.0725 | 9.1    | ppb v/v  |       | 1        | 0.5 |
|                                              | 04-MAY-07 14:07                    | 0.40   | 50.    | μg/m³    |       | 1        | 2.7 |
| Carbon Tetrachloride Carbon Tetrachloride    | 04-MAY-07 14:07                    | 0.0657 | ND     | ppb v/v  |       | 1        | 0.5 |
| Benzene                                      | 04-MAY-07 14:07                    | 0.41   | ND     | µg/m³    |       | 1        | 3.1 |
| Benzene                                      | 04-MAY-07 14:07                    | 0.102  | 0.72   | ppb v/v  |       | 1        | 0.5 |
| Tetrahydrofuran                              | 04-MAY-07 14:07                    | 0.33   | 2.3    | µg/m³    |       | 1        | 1.6 |
| Tetrahydrofuran<br>Tetrahydrofuran           | 04-MAY-07 14:07                    | 0.227  | ND     | ppb v/v  |       | 1        | 0.5 |
| 1,2-Dichloroethane                           | 04-MAY-07 14:07                    | 0.67   | ND     | µg/m³    |       | 1 1      | 1.5 |
|                                              | 04-MAY-07 14:07                    | 0.153  | ND     | ppb v/v  |       | 1        | 0.5 |
| 1,2-Dichloroethane Cyclohexane               | 04-MAY-07 14:07                    | 0.62   | ND     | µg/m³    |       | 1        | 2.0 |
|                                              | 04-MAY-07 14:07                    | 0.120  | ND     | ppb v/v  |       | 1        | 0.5 |
| Cyclohexane<br>Trichloroethene               | 04-MAY-07 14:07                    | 0.41   | ND     | ug/m³    |       | 1        | 1.7 |
| Trichloroethene Trichloroethene              | 04-MAY-07 14:07                    | 1.2    | 220    | ppb v/v  |       | 10       | 5.0 |
| 1,2-Dichloropropane                          | 04-MAY-07 14:07                    | 6.4    | 1200   | μg/m³    |       | 10       | 27. |
| 1,2-Dichloropropane 1,2-Dichloropropane      | 04-MAY-07 14:07                    | 0.123  | ND     | v/v dag  |       | 1        | 0.5 |
| Bromodichloromethane                         | 04-MAY-07 14:07                    | 0.57   | ND     | µg/m³    | ····· | 1        | 2.3 |
| Bromodichloromethane                         | 04-MAY-07 14:07                    | 0.0779 | ND     | ppb v/v  |       | 1        | 0.5 |
| Heptane                                      | 04-MAY-07 14:07                    | 0.52   | ND     | μg/m³    |       | 1        | 3.3 |
| Heptane Heptane                              | 04-MAY-07 14:07                    | 0.101  | 1.4    | v/v dqq  |       | 1        | 0.5 |
| cis-1,3-Dichloropropene                      | 04-MAY-07 14:07                    | 0.41   | 5.6    | μg/m³    |       | 1        | 2.0 |
| cis-1,3-Dichloropropene                      | 04-MAY-07 14:07                    | 0.106  | ND     | ppb v/v  |       | 1        | 0.5 |
|                                              | 04-MAY-07 14:07                    | 0.48   | ND     | μg/m³    |       | 1        | 2.3 |
| 4-Methyl-2-Pentanone<br>4-Methyl-2-Pentanone | 04-MAY-07 14:07                    | 0.116  | ND     | ppb v/v  |       | 1        | 0.5 |
| Toluene                                      | 04-MAY-07 14:07                    | 0.48   | ND     | μg/m³    |       | 1        | 2.0 |
| Toluene                                      | 04-MAY-07 14:07                    | 0.115  | 1.9    | v/v dqq  |       | 1        | 0.5 |
| trans-1,3-Dichloropropene                    | 04-MAY-07 14:07                    | 0.43   | 7.3    | μg/m³    |       | 1        | 1.9 |
| trans-1,3-Dichloropropene                    | 04-MAY-07 14:07                    | 0.130  | ND     | ppb v/v  |       | 1        | 0.5 |
| 1,1,2-Trichloroethane                        | 04-MAY-07 14:07                    | 0.59   | ND     | μg/m³    |       | 1        | 2.3 |
| 1,1,2-Trichloroethane                        | 04-MAY-07 14:07                    | 0.0972 | ND     | v/v dqq  |       | 1        | 0.5 |
| Tetrachloroethene                            | 04-MAY-07 14:07                    | 0.53   | ND     | µg/m³    |       | 1        | 2.7 |
| Tetrachloroethene                            | 04-MAY-07 14:07<br>04-MAY-07 14:07 | 0.0847 | 2.1    | ppb v/v  |       | 1        | 0.5 |
| 2-Hexanone                                   |                                    | 0.57   | 14.    | μg/m³    |       | 1        | 3.4 |
| 2-Hexanone                                   | 04-MAY-07 14:07                    | 0.136  | ND     | v/v dgg  |       | 1        | 0.5 |
| Dibromochloromethane                         | 04-MAY-07 14:07                    | 0.56   | ND     | µg/m³    |       | 1        | 2.0 |
| Dibromochloromethane                         | 04-MAY-07 14:07<br>04-MAY-07 14:07 | 0.0792 | ND     | ppb v/v  |       | 1        | 0.5 |
| 1,2-Dibromoethane                            | 04-MAY-07 14:07<br>04-MAY-07 14:07 | 0.67   | ND     | ug/m³    |       | 1        | 4.2 |
| 1,2-Dibromoethane                            | 04-MAY-07 14:07<br>04-MAY-07 14:07 | 0.119  | ND     | _ppb_v/v |       | 1        | 0.5 |
| Chlorobenzene                                | 04-MAY-07 14:07<br>04-MAY-07 14:07 | 0.91   | ND     | µg/m³    |       | 1        | 3.8 |
| Chlorobenzene                                | 04-MAY-07 14:07<br>04-MAY-07 14:07 |        | ND     | v/v dqq  |       | 1        | 0.5 |
| Ethylbenzene                                 | 04-MAY-07 14:07<br>04-MAY-07 14:07 | 0.41   | ND     | µg/m³    |       | 1        | 2.3 |
| Ethylbenzene<br>Ethylbenzene                 | 04-MAY-07 14:07<br>04-MAY-07 14:07 | 0.150  | 0.66   | v/v dqq  |       | 1        | 0.5 |
| m,p-Xvlene                                   |                                    | 0.65   | 2.9    | ug/m³    |       | 1        | 2.2 |
| m,p-Xylene                                   | 04-MAY-07 14:07 04-MAY-07 14:07    | 0.213  | 1.2    | v/v dqq  |       | 1        | 1.0 |
| o-Xylene                                     |                                    | 0.92   | 5.1    | na/w3    |       | 1        | 4.3 |
| o-Xylene                                     | 04-MAY-07 14:07                    | 0.113  | 0.49   | v/v dqq  | J     | 1        | 0.5 |
| Styrene                                      | 04-MAY-07 14:07                    | 0.49   | 2.1    | ng/m³    | J     | 1        | 2.2 |
| Styrene                                      | 04-MAY-07 14:07                    | 0.0748 | ND     | ppb v/v  |       | 1        | 0.5 |
| Bromoform                                    | 04-MAY-07 14:07                    | 0.32   | ND     | µg/m³    |       | 1        | 2.1 |
| Bromoform                                    | 04-MAY-07 14:07                    | 0.0884 | ND     | v/v dqq  |       | 1        | 0.5 |
| 1,1,2,2-Tetrachloroethane                    | 04-MAY-07 14:07                    | 0.90   | ND     | μg/m³    |       | 1        | 5.1 |
| 1,1,2,2-Tetrachloroethane                    | 04-MAY-07 14:07                    | 0.108  | ND     | ppb v/v  |       | 1        | 0.5 |
| Benzyl Chloride                              | 04-MAY-07 14:07                    | 0.74   | ND     | µg/m³    |       | 1        | 3.4 |
| Defire AT CHITOTIME                          | 04-MAY-07 14:07                    | 0.136  | ND     | v/v dqq  |       | 1        | 0.5 |



Form RLIMS63A-V1.4 05100710505088

Page 20



### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 10-MAY-07 10:50 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02347 DCL Report Group..: 07E-0352-01

### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Qual. | Dilution | PQL |
|------------------------|------------------|--------|--------|---------|-------|----------|-----|
| Benzyl Chloride        | 04-MAY-07 14:07  | 0.70   | ND     | ug/m³   |       | 1        | 2.6 |
| 4-Ethyl toluene        | 04-MAY-07 14:07  | 0.0983 | 0.14   | v\v dqq | J     | 1        | 0.5 |
| 4-Ethyl toluene        | 04-MAY-07 14:07  | 0.48   | 0.67   | ug/m³   | J     | 1 1      | 2.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 14:07  | 0.112  | 0.22   | ppb v/v | J     | 1 1      | 0.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 14:07  | 0.55   | 1.1    | µg/m³   | J     | 1 1      | 2.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 14:07  | 0.117  | 0.69   | v\v dag |       | 1        | 0.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 14:07  | 0.58   | 3.4    | µg/m³   |       | 1 1      | 2.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 14:07  | 0.120  | ND     | ppb v/v |       | 1 1      | 0.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 14:07  | 0.72   | ND     | ug/m³   |       | 1 1      | 3.0 |
| 1,4-Dichlorobenzene    | 04-MAY-07 14:07  | 0.0987 | ND     | ppb v/v |       | 1 1      | 0.5 |
| 1,4-Dichlorobenzene    | 04-MAY-07 14:07  | 0.59   | ND     | ug/m³   |       | 1 1      | 3.0 |
| 1,2-Dichlorobenzene    | 04-MAY-07 14:07  | 0.0851 | ND     | ppb v/v |       | 1 1      | 0.5 |
| 1,2-Dichlorobenzene    | 04-MAY-07 14:07  | 0.51   | ND     | nd/m3   |       | 1 1      | 3.0 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 14:07  | 0.115  | ND     | v\v daa |       | 1 1      | 0.5 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 14:07  | 0.85   | ND     | na/w3   |       | 1 1      | 3.7 |
| Hexachlorobutadiene    | 04-MAY-07 14:07  | 0.119  | ND     | v\v dqq |       | 1 1      | 0.5 |
| Hexachlorobutadiene    | 04-MAY-07 14:07  | 1.3    | ND     | μg/m³   |       | 1 1      | 5.3 |

### Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
| Isobutane(4.65)             | 04-MAY-07 14:07  | 8.2    | ppb v/v | J     | 1        |
| Butane (4.93)               | 04-MAY-07 14:07  | 3.3    | ppb v/v | J     | 1        |
| Ethanol(5.44)               | 04-MAY-07 14:07  | 26.    | v/v dag | J     | 1        |
| Disulfide, dimethyl(11.58)  | 04-MAY-07 14:07  | 2.4    | ppb v/v | J     | 1        |
| Unknown fluorocarbon(13.79) | 04-MAY-07 14:07  | 14.    | v/v dqq | J     | 1 1      |



### Form RLIMS63A-V1.4 05100710505088

Page 21



### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 10-MAY-07 10:50

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: 055729

Sampling Site..... Behr VOC Plume PRP

Release Number..... 055729

Date Received.....: 03-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL Net Weight/Volume...: Not Required

Client Sample Name: EPA-15-SS DCL Sample Name...: 07E02348 DCL Report Group..: 07E-0352-01

Matrix.... AIR

Date Sampled....: 01-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....:

X As Received □ Dried

DCL Analysis Group: G074801C Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type..... DB-1

X Primary ☐ Confirmation

### Analytical Results

| Analyte                  | Date<br>Analyzed | MDL    | Result | Units             | Oual     | Dilution      | POL  |
|--------------------------|------------------|--------|--------|-------------------|----------|---------------|------|
| Propene                  | 04-MAY-07 15:19  | 0.180  | NDUJ   |                   | Quui.    | 1             | 0.5  |
| Propene                  | 04-MAY-07 15:19  | 0.31   | ND UT  |                   |          | 1             | 0.86 |
| Dichlorodifluoromethane  | 04-MAY-07 15:19  | 0.0669 | 0.46   | ppb v/v           | J        | 1             | 0.86 |
| Dichlorodifluoromethane  | 04-MAY-07 15:19  | 0.33   | 2.3    | μg/m³             | J        | 1             | 2.5  |
| Chloromethane            | 04-MAY-07 15:19  | 0.249  | NDUT   | ppb v/v           | <u> </u> | $\frac{1}{1}$ | 0.5  |
| Chloromethane            | 04-MAY-07 15:19  | 0.51   | NDIN   | ug/m³             |          | 1 1           | 1.0  |
| Freon 114                | 04-MAY-07 15:19  | 0.156  | ND     | ppb v/v           |          | 1 1           | 0.5  |
| Freon 114                | 04-MAY-07 15:19  | 1.1    | ND     | na/w3             |          | 1 1           | 3.5  |
| Vinyl Chloride           | 04-MAY-07 15:19  | 0.301  | ND UJ  | v\v dag           |          | $\frac{1}{1}$ | 0.5  |
| Vinyl Chloride           | 04-MAY-07 15:19  | 0.77   | NDUT   | nd/m3             |          | $\frac{1}{1}$ | 1.3  |
| 1,3-Butadiene            | 04-MAY-07 15:19  | 0.346  | ND I   |                   |          | 1 1           | 0.5  |
| 1,3-Butadiene            | 04-MAY-07 15:19  | 0.77   | ND IX  | na/w3             |          | 1             | 1.1  |
| Bromomethane             | 04-MAY-07 15:19  | 0.215  | ND D   |                   |          | $\frac{1}{1}$ | 0.5  |
| Bromomethane             | 04-MAY-07 15:19  | 0.83   | ND IJ  | na/w3             |          | 1 1           | 1.9  |
| Chloroethane             | 04-MAY-07 15:19  | 0.388  | ND IX  |                   |          | 1             | 0.5  |
| Chloroethane             | 04-MAY-07 15:19  | 1.0    | ND UT  | ua/m³             |          | 1             | 1.3  |
| Freon 11                 | 04-MAY-07 15:19  | 0.0921 | 0.42   | v\v daa           | J        | 1             | 0.5  |
| Freon 11                 | 04-MAY-07 15:19  | 0.52   | 2.4    | na/w3             | J        | 1             | 2.8  |
| cis-1,2-Dichloroethene   | 04-MAY-07 15:19  | 0.102  | ND     | v\v dag           |          | 1             | 0.5  |
| cis-1,2-Dichloroethene   | 04-MAY-07 15:19  | 0.40   | ND     | ha/w3             |          | 1             | 2.0  |
| Carbon Disulfide         | 04-MAY-07 15:19  | 0.111  | 0.13   | v\v daa           | J        | 1             | 0.5  |
| Carbon Disulfide         | 04-MAY-07 15:19  | 0.35   | 0.40   | ug/m³             | J        | 1             | 1.6  |
| Freon 113                | 04-MAY-07 15:19  | 0.0950 | ND     | ppb v/v           |          | 1             | 0.5  |
| Freon 113                | 04-MAY-07 15:19  | 0.73   | ND     | nd/w3             |          | 1             | 3.8  |
| Acetone                  | 04-MAY-07 15:19  | 0.113  | 15.    | ppb v/v           |          | 1 1           | 0.5  |
| Acetone                  | 04-MAY-07 15:19  | 0.27   | 36.    | nd/w3             |          | 1 1           | 1.2  |
| Methylene Chloride       | 04-MAY-07 15:19  | 0.168. | ND     | ppb v/v           |          | 1             | 0.5  |
| Methylene Chloride       | 04-MAY-07 15:19  | 0.58   | ND     | µg/m³             |          | 1             | 1.7  |
| trans-1,2-Dichloroethene | 04-MAY-07 15:19  | 0.118  | ND     | v\v daa           |          | 1             | 0.5  |
| trans-1,2-Dichloroethene | 04-MAY-07 15:19  | 0.47   | ND     | ug/m³             |          | 1             | 2.0  |
| 1,1-Dichloroethane       | 04-MAY-07 15:19  | 0.116  | ND     | v\v dag           |          | 1             | 0.5  |
| 1,1-Dichloroethane       | 04-MAY-07 15:19  | 0.47   | ND     | nd/w3             |          | 1             | 2.0  |
| Methyl t-Butyl Ether     | 04-MAY-07 15:19  | 0.147  | ND     | ppb v/v           |          | 1             | 0.5  |
| Methyl t-Butyl Ether     | 04-MAY-07 15:19  | 0.53   | ND     | na/m3             |          | 1             | 1.8  |
| Vinyl Acetate            | 04-MAY-07 15:19  | 0.133  | ND     | v\v dag           |          | 1             | 0.5  |
| Vinyl Acetate            | 04-MAY-07 15:19  | 0.47   | ND     | ha/w <sub>3</sub> |          | 1             | 1.8  |
| 1,1-Dichloroethene       | 04-MAY-07 15:19  | 0.109  | ND     | ppb v/v           |          | 1             | 0.5  |
| 1,1-Dichloroethene       | 04-MAY-07 15:19  | 0.43   | ND     | na/w <sub>3</sub> |          | 1             | 2.0  |
| 2-Butanone               | 04-MAY-07 15:19  | 0.182  | 0.20   | ppb v/v           | J        | 1             | 0.5  |
| 2-Butanone               | 04-MAY-07 15:19  | 0.54   | 0.58   | ha/w <sub>3</sub> | J        | 1             | 1.5  |
| Ethyl Acetate            | 04-MAY-07 15:19  | 0.273  | ND     | ppb v/v           |          | 1 .           | 0.5  |

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 @ Web Page: www.datachem.com

E-mail: lab@datachem.com



### SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 05100710505088

Page 22



Date Printed.....: 10-MAY-07 10:50 Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E02348 DCL Report Group..: 07E-0352-01

| Analyte                                | Date                               | 1007          |        |                   | T            | T             |            |
|----------------------------------------|------------------------------------|---------------|--------|-------------------|--------------|---------------|------------|
| Ethyl Acetate                          | Analyzed                           | MDL           | Result | Units             | Qual.        | Dilution      | PQL        |
| Hexane                                 | 04-MAY-07 15:19                    |               | ND     | µg/m³             |              | 1             | 1.8        |
| Hexane                                 | 04-MAY-07 15:19<br>04-MAY-07 15:19 |               | 1.9    | ppb v/v           |              | 1             | 0.5        |
| Chloroform                             | 04-MAY-07 15:19<br>04-MAY-07 15:19 | 0.43          | 6.6    | µg/m³             | ļ            | 1             | 1.8        |
| Chloroform                             | 04-MAY-07 15:19<br>04-MAY-07 15:19 | 0.115         | 0.14   | ppb v/v           | J            | 1             | 0.5        |
| 1,1,1-Trichloroethane                  | 04-MAY-07 15:19                    |               | 0.66   | µg/m³             | J            | 1 1           | 2.4        |
| 1,1,1-Trichloroethane                  | 04-MAY-07 15:19                    | 1 0 1 0 1 2 3 | 0.75   | v/v dqq           | ļ            | 1             | 0.5        |
| Carbon Tetrachloride                   | 04-MAY-07 15:19                    | 0.40          | 4.1    | µg/m³             |              | 1             | 2.7        |
| Carbon Tetrachloride                   | 04-MAY-07 15:19                    | 0.0657        | ND     | ppb v/v           |              | 1 1           | 0.5        |
| Benzene                                | 04-MAY-07 15:19                    | 0.102         | ND     | µg/m³             |              | 1             | 3.1        |
| Benzene                                | 04-MAY-07 15:19                    | 0.102         | 1.9    | ppb v/v           | ļ            | 1 1           | 0.5        |
| Tetrahydrofuran                        | 04-MAY-07 15:19                    |               | ND     | µg/m³             | <del> </del> | 1             | 1.6        |
| Tetrahydrofuran                        | 04-MAY-07 15:19                    | 0.67          | ND     | ppb v/v           | <del> </del> | 1             | 0.5        |
| 1,2-Dichloroethane                     | 04-MAY-07 15:19                    | 0.153         | ND     | ppb v/v           | <b></b>      | 1 1           | 1.5        |
| 1,2-Dichloroethane                     | 04-MAY-07 15:19                    | 0.62          | ND     | ha/w <sub>3</sub> |              | 1             | 0.5        |
| Cyclohexane                            | 04-MAY-07 15:19                    | 0.120         | 0.68   | ppb v/v           |              | 1 1           | 2.0        |
| Cyclohexane                            | 04-MAY-07 15:19                    | 0.41          | 2.4    | nd/w <sub>3</sub> |              | 1             | 0.5        |
| Trichloroethene                        | 04-MAY-07 15:19                    | 0.120         | ND     | ppb v/v           |              | 1             | 1.7        |
| Trichloroethene                        | 04-MAY-07 15:19                    | 0.64          | ND     | hd/w <sub>3</sub> |              | 1             | 0.5        |
| 1,2-Dichloropropane                    | 04-MAY-07 15:19                    | 0.123         | ND     | ppb v/v           |              | 1             | 2.7        |
| 1,2-Dichloropropane                    | 04-MAY-07 15:19                    | 0.57          | ND     | ug/m³             |              | $\frac{1}{1}$ | 0.5        |
| Bromodichloromethane                   | 04-MAY-07 15:19                    | 0.0779        | ND     | ppb v/v           |              | $\frac{1}{1}$ | 2.3        |
| Bromodichloromethane                   | 04-MAY-07 15:19                    | 0.52          | ND     | µg/m³             |              | $\frac{1}{1}$ | 0.5<br>3.3 |
| Heptane                                | 04-MAY-07 15:19                    | 0.101         | 0.75   | ppb v/v           |              | 1             | 0.5        |
| Heptane                                | 04-MAY-07 15:19                    | 0.41          | 3.1    | na/w3             |              | 1             | 2.0        |
| cis-1,3-Dichloropropene                | 04-MAY-07 15:19                    | 0.106         | ND     | v\v dag           |              | 1             | 0.5        |
| cis-1,3-Dichloropropene                | 04-MAY-07 15:19                    | 0.48          | ND     | μg/m³             |              | 1             | 2.3        |
| 4-Methyl-2-Pentanone                   | 04-MAY-07 15:19                    | 0.116         | ND     | ppb v/v           |              | 1             | 0.5        |
| 4-Methyl-2-Pentanone                   | 04-MAY-07 15:19                    | 0.48          | ND     | μg/m³             |              | 1             | 2.0        |
| Toluene                                | 04-MAY-07 15:19                    | 0.115         | 2.8    | ppb v/v           |              | 1             | 0.5        |
| Toluene                                | 04-MAY-07 15:19                    | 0.43          | 11.    | μg/m³             |              | 1             | 1.9        |
| trans-1,3-Dichloropropene              | 04-MAY-07 15:19                    | 0.130         | ND     | ppb v/v           |              | 1             | 0.5        |
| trans-1,3-Dichloropropene              | 04-MAY-07 15:19                    | 0.59          | ND     | µg/m³             |              | 1             | 2.3        |
| 1,1,2-Trichloroethane                  | 04-MAY-07 15:19                    | 0.0972        | ND     | ppb v/v           |              | 1             | 0.5        |
| 1,1,2-Trichloroethane                  | 04-MAY-07 15:19                    | 0.53          | ND     | μg/m³             |              | 1             | 2.7        |
| Tetrachloroethene<br>Tetrachloroethene | 04-MAY-07 15:19                    | 0.0847        | ND     | v/v dqq           |              | 1             | 0.5        |
| 2-Hexanone                             | 04-MAY-07 15:19                    | 0.57          | ND     | µg/m³             |              | 1             | 3.4        |
| 2-Hexanone                             | 04-MAY-07 15:19                    | 0.136         | ND     | v/v dqq           |              | 1             | 0.5        |
| Dibromochloromethane                   | 04-MAY-07 15:19                    | 0.56          | ND     | μg/m³             |              | 1             | 2.0        |
| Dibromochloromethane                   | 04-MAY-07 15:19                    | 0.0792        | ND     | ppb v/v           |              | 1 .           | 0.5        |
| 1,2-Dibromoethane                      | 04-MAY-07 15:19                    | 0.67          | ND     | μg/m³             |              | 1             | 4.2        |
| 1,2-Dibromoethane                      | 04-MAY-07 15:19                    | 0.119         | ND     | ppb v/v           |              | 1             | 0.5        |
| Chlorobenzene                          | 04-MAY-07 15:19                    | 0.91          | ND     | µg/m³             |              | 1             | 3.8        |
| Chlorobenzene                          | 04-MAY-07 15:19                    | 0.0882        | ND     | ppb v/v           |              | 1             | 0.5        |
| Ethylbenzene                           | 04-MAY-07 15:19                    | 0.41          | ND     | µg/m³             |              | 1             | 2.3        |
| Ethylbenzene                           | 04-MAY-07 15:19                    | 0.150         | 1.2    | ppb v/v           |              | 1             | 0.5        |
| m,p-Xylene                             | 04-MAY-07 15:19                    | 0.65          | 5.3    | μg/m³             |              | 1             | 2.2        |
| m,p-Xylene                             | 04-MAY-07 15:19                    | 0.213         | 3.4    | v\v dqq           |              | 1             | 1.0        |
| o-Xylene                               | 04-MAY-07 15:19<br>04-MAY-07 15:19 | 0.92          | 15.    | µg/m³             |              | 1             | 4.3        |
| o-Xylene                               | 04-MAY-07 15:19<br>04-MAY-07 15:19 | 0.113         | 1.6    | v\v daa           |              | 1             | 0.5        |
| Styrene                                | 04-MAY-07 15:19<br>04-MAY-07 15:19 | 0.49          | 6.8    | nd/m3             |              | 1             | 2.2        |
| Styrene                                | 04-MAY-07 15:19<br>04-MAY-07 15:19 | 0.0748        | 0.31   | v\v dqq           | J            | 1             | 0.5        |
| Bromoform                              | 04-MAY-07 15:19<br>04-MAY-07 15:19 | 0.32          | 1.3    | μg/m³             | J            | 1             | 2.1        |
| Bromoform                              | 04-MAY-07 15:19                    | 0.0884        | ND     | ppb v/v           |              | 1             | 0.5        |
| 1,1,2,2-Tetrachloroethane              | 04-MAY-07 15:19<br>04-MAY-07 15:19 | 0.90          | ND     | ha/w3             |              | 1             | 5.1        |
| 1,1,2,2-Tetrachloroethane              | 04-MAY-07 15:19<br>04-MAY-07 15:19 | 0.108         | ND     | ppb v/v           |              | 1             | 0.5        |
| Benzyl Chloride                        | 04-MAY-07 15:19<br>04-MAY-07 15:19 | 0.74          | ND     | ug/m³             |              | 1             | 3.4        |
|                                        | 104-MAI-0/ 15:19                   | 0.136         | ND     | ppb v/v           |              | 1             | 0.5        |



Form RLIMS63A-V1.4 05100710505088

Page 23



### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:50
Client Name....: Weston Solutions, Inc.

DCL Sample Name...: 07E02348
DCL Report Group..: 07E-0352-01

### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Qual. | Dilution | PQL |
|------------------------|------------------|--------|--------|---------|-------|----------|-----|
| Benzyl Chloride        | 04-MAY-07 15:19  | 0.70   | ND     | μg/m³   | ~     | 1        | 2.6 |
| 4-Ethyl toluene        | 04-MAY-07 15:19  | 0.0983 | 0.44   | v/v dag | J     | 1 1      | 0.5 |
| 4-Ethyl toluene        | 04-MAY-07 15:19  | 0.48   | 2.1    | ug/m³   | J     | 1 1      | 2.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 15:19  | 0.112  | 0.60   | v/v dag |       | 1        | 0.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 15:19  | 0.55   | 2.9    | µg/m³   |       | 1        | 2.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 15:19  | 0.117  | 1.9    | v\v daa |       | 1        | 0.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 15:19  | 0.58   | 9.6    | na/m3   |       | 1        | 2.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 15:19  | 0.120  | 0.38   | v/v dag | J     | 1 1      | 0.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 15:19  | 0.72   | 2.3    | μq/m³   | J     | 1        | 3.0 |
| 1,4-Dichlorobenzene    | 04-MAY-07 15:19  | 0.0987 | 0.38   | v/v dag | J     | 1        | 0.5 |
| 1,4-Dichlorobenzene    | 04-MAY-07 15:19  | 0.59   | 2.3    | ug/m³   | J     | 1        | 3.0 |
| 1,2-Dichlorobenzene    | 04-MAY-07 15:19  | 0.0851 | ND     | v/v dag |       | 1        | 0.5 |
| 1,2-Dichlorobenzene    | 04-MAY-07 15:19  | 0.51   | ND     | µg/m³   |       | 1        | 3.0 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 15:19  | 0.115  | ND     | v/v daa |       | 1        | 0.5 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 15:19  | 0.85   | ND     | µg/m³   |       | 1        | 3.7 |
| Hexachlorobutadiene    | 04-MAY-07 15:19  | 0.119  | ND     | v/v dag |       | 1        | 0.5 |
| Hexachlorobutadiene    | 04-MAY-07 15:19  | 1.3    | ND     | μg/m³   |       | 1        | 5.3 |

### Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Oual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
| Dimethyl Ether(4.54)        | 04-MAY-07 15:19  | 4.8    | v\v daa | ·J    | 1        |
| Isobutane(4.67)             | 04-MAY-07 15:19  | 4.5    | v/v dag | J     | 1 1      |
| Butane(4.95)                | 04-MAY-07 15:19  | 2.6    | ppb v/v | J     | 1        |
| Ethanol (5.50)              | 04-MAY-07 15:19  | 11.    | ppb v/v | J     | 1        |
| Pentane (6.28)              | 04-MAY-07 15:19  | 3.2    | ppb v/v | J     | 1        |
| Pentane, 2-methyl-(7.70)    | 04-MAY-07 15:19  | 3.9    | ppb v/v | J     | 1        |
| Pentane, 3-methyl-(8.03)    | 04-MAY-07 15:19  | 2.6    | v/v dqq | J     | 1        |
| Hexanal (12.67)             | 04-MAY-07 15:19  | 3.4    | ppb v/v | J     | 1        |
| Unknown fluorocarbon(13.79) | 04-MAY-07 15:19  | 16.    | v\v dqq | J     | 1        |
| Undecane (18.69)            | 04-MAY-07 15:19  | 2.9    | v/v dqq | J     | 1        |
| Dodecane(20.24)             | 04-MAY-07 15:19  | 3.5    | v/v dqq | J     | 1        |



# 05100710505088

Page 24

Client Sample Name: EPA-16-SS DCL Sample Name...: 07E02349

Matrix.... AIR

Reporting Units...: ppb v/v

DCL Analysis Group: G074801C

DCL Report Group..: 07E-0352-01

Date Sampled....: 01-MAY-07 00:00

Report Basis....:

☒ As Received ☐ Dried

Form RLIMS63A-V1.4

#### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:50

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: 055729

Sampling Site..... Behr VOC Plume PRP

Release Number.....: 055729

Date Received.....: 03-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared...... Not Applicable Preparation Method...: Not Applicable

Net Weight/Volume...: Not Required

Aliquot Weight/Volume: 200 mL

Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1

> X Primary ☐ Confirmation

# Analytical Results

| Analyte                  | Date<br>Analyzed | MDL    | Result | Units             | Qual. | Dilution                | POL        |
|--------------------------|------------------|--------|--------|-------------------|-------|-------------------------|------------|
| Propene                  | 04-MAY-07 16:31. | 0.180  | ND UJ  | v\v dag           |       | 1                       | 0.5        |
| Propene                  | 04-MAY-07 16:31  | 0.31   | NDUT   | ug/m³             |       | 1 1                     | 0.86       |
| Dichlorodifluoromethane  | 04-MAY-07 16:31  | 0.0669 | 0.48   | ppb v/v           | J     | 1 1                     | 0.5        |
| Dichlorodifluoromethane  | 04-MAY-07 16:31  | 0.33   | 2.4    | ug/m³             | J     | 1 1                     | 2.5        |
| Chloromethane            | 04-MAY-07 16:31  | 0.249  | CIGN   | ppb v/v           | -     | 1                       | 0.5        |
| Chloromethane            | 04-MAY-07 16:31  | 0.51   | ND UJ  |                   |       | 1 1                     | 1.0        |
| Freon 114                | 04-MAY-07 16:31  | 0.156  | ND     | v/v dag           |       | 1                       | 0.5        |
| Freon 114                | 04-MAY-07 16:31  | 1.1    | ND     | ug/m³             |       | 1                       | 3.5        |
| Vinyl Chloride           | 04-MAY-07 16:31  | 0.301  | NDUJ   |                   |       | 1 1                     | 0.5        |
| Vinyl Chloride           | 04-MAY-07 16:31  | 0.77   | ND U.T |                   |       | 1                       | 1.3        |
| 1,3-Butadiene            | 04-MAY-07 16:31  | 0.346  | ND 1)J |                   |       | 1 1                     | 0.5        |
| 1,3-Butadiene            | 04-MAY-07 16:31  | 0.77   | NDUT   | ug/m³             |       | 1                       | 1.1        |
| Bromomethane             | 04-MAY-07 16:31  | 0.215  | ND UT  |                   |       | 1                       | 0.5        |
| Bromomethane             | 04-MAY-07 16:31  | 0.83   | ND UT  | ua/m³.            |       | 1                       | 1.9        |
| Chloroethane             | 04-MAY-07 16:31  | 0.388  | ND UJ  |                   |       | 1                       | 0.5        |
| Chloroeth <b>ane</b>     | 04-MAY-07 16:31  | 1.0    | ND UT  | ug/m³             |       | 1                       | 1.3        |
| Freon 11                 | 04-MAY-07 16:31  | 0.0921 | 0.22   | v\v dag           | J     | 1                       | 0.5        |
| Freon 11                 | 04-MAY-07 16:31  | 0.52   | 1.2    | µg/m³             | · J   | 1                       | 2.8        |
| cis-1,2-Dichloroethene   | 04-MAY-07 16:31  | 0.102  | ND     | v\v dag           |       | 1                       | 0.5        |
| cis-1,2-Dichloroethene   | 04-MAY-07 16:31  | 0.40   | ND     | µg/m³             |       | 1                       | 2.0        |
| Carbon Disulfide         | 04-MAY-07 16:31  | 0.111  | 0.14   | v\v daa           | J     | 1                       | 0.5        |
| Carbon Disulfide         | 04-MAY-07 16:31  | 0.35   | 0.44   | ug/m³             | J     | 1                       | 1.6        |
| Freon 113                | 04-MAY-07 16:31  | 0.0950 | ND     | ppb v/v           |       | 1                       | 0.5        |
| Freon 113                | 04-MAY-07 16:31  | 0.73   | ND     | nd/w3             |       | 1                       | 3.8        |
| Acetone                  | 04-MAY-07 16:31  | 0.113  | 3.7    | ppb v/v           |       | 1                       | 0.5        |
| Acetone                  | 04-MAY-07 16:31  | 0.27   | 8.9    | nd/w3             |       | 1                       | 1.2        |
| Methylene Chloride       | 04-MAY-07 16:31  | 0.168  | ND     | v\v dqq           |       | 1                       | 0.5        |
| Methylene Chloride       | 04-MAY-07 16:31  | 0.58   | ND     | hd/w <sub>3</sub> |       | 1                       | 1.7        |
| trans-1,2-Dichloroethene | 04-MAY-07 16:31  | 0.118  | ND     | ppb v/v           |       | 1                       | 0.5        |
| trans-1,2-Dichloroethene | 04-MAY-07 16:31  | 0.47   | ND     | ug/m³             |       | 1                       | 2.0        |
| 1,1-Dichloroethane       | 04-MAY-07 16:31  | 0.116  | ND     | ppb v/v           |       | 1                       | 0.5        |
| l,1-Dichloroethane       | 04-MAY-07 16:31  | 0.47   | ND     | ug/m³             |       | 1                       | 2.0        |
| Methyl t-Butyl Ether     | 04-MAY-07 16:31  | 0.147  | ND     | v/v dag           |       | 1                       | 0.5        |
| Methyl t-Butyl Ether     | 04-MAY-07 16:31  | 0.53   | ND     | hd/w <sub>3</sub> |       | 1                       |            |
| Jinyl Acetate            | 04-MAY-07 16:31  | 0.133  | ND     | ppb v/v           |       | 1                       | 1.8<br>0.5 |
| /inyl Acetate            | 04-MAY-07 16:31  | 0.47   | ND     | nd/w <sub>3</sub> |       | 1                       |            |
| ,1-Dichloroethene        | 04-MAY-07 16:31  | 0.109  | ND     | ppb v/v           |       | <del>- <u>+</u> +</del> | 1.8        |
| ,1-Dichloroethene        | 04-MAY-07 16:31  | 0.43   | ND     | hd/w3             |       | 1                       | 0.5        |
| 2-Butanone               | 04-MAY-07 16:31  | 0.182  | ND     | ppb v/v           |       | 1                       | 2.0        |
| 2-Butanone               | 04-MAY-07 16:31  | 0.54   | ND     | ha/w3             |       |                         | 0.5        |
| Ethyl Acetate            | 04-MAY-07 16:31  | 0.273  | ND     | ppb v/v           |       | $-\frac{1}{1}$          | 1.5<br>0.5 |

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 Web Page: www.datachem.com FAX (801) 268-9992 E-mail: lab@datachem.com



# SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 05100710505088 Page 25



Date Printed.....: 10-MAY-07 10:50

Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02349 DCL Report Group..: 07E-0352-01

| Analyte                   | Date<br>Analyzed                   | MDL    | Result    | Units             | Qual.       | Dilution      | PQL |
|---------------------------|------------------------------------|--------|-----------|-------------------|-------------|---------------|-----|
| Ethyl Acetate             | 04-MAY-07 16:31                    | 0.98   | ND        | μg/m³             |             | 1             | 1.8 |
| Hexane                    | 04-MAY-07 16:31                    | 0.121  | 1.4       | ppb v/v           |             | 1             | 0.5 |
| Hexane                    | 04-MAY-07 16:31                    | 0.43   | 4.9       | µg/m³             |             | 1             | 1.8 |
| Chloroform                | 04-MAY-07 16:31                    | 0.115  | ND        | ppb v/v           |             | 1             | 0.5 |
| Chloroform                | 04-MAY-07 16:31                    | 0.56   | ND        | ug/m³             |             | 1             | 2.4 |
| 1,1,1-Trichloroethane     | 04-MAY-07 16:31                    | 0.0725 | 0.22      | v\v dag           | J           | 1             | 0.5 |
| 1,1,1-Trichloroethane     | 04-MAY-07 16:31                    | 0.40   | 1.2       | µg/m³             | J           | 1 1           | 2.7 |
| Carbon Tetrachloride      | 04-MAY-07 16:31                    | 0.0657 | ND        | ppb v/v           |             | 1 1           | 0.5 |
| Carbon Tetrachloride      | 04-MAY-07 16:31                    | 0.41   | ND        | µg/m³             |             | 1 1           | 3.1 |
| Benzene                   | 04-MAY-07 16:31                    | 0.102  | 0.45      | v\v dqq           | J           | 1             | 0.5 |
| Benzene                   | 04-MAY-07 16:31                    | 0.33   | 1.4       | µg/m³             | J           | 1             | 1.6 |
| Tetrahydrofuran           | 04-MAY-07 16:31                    | 0.227  | ND        | ppb v/v           |             | 1             | 0.5 |
| Tetrahydrofuran           | 04-MAY-07 16:31                    | 0.67   | ND        | µg/m³             |             | 1             | 1.5 |
| 1,2-Dichloroethane        | 04-MAY-07 16:31                    | 0.153  | ND        | ppb v/v           |             | 1             | 0.5 |
| 1,2-Dichloroethane        | 04-MAY-07 16:31                    | 0.62   | ND        | ug/m³             |             | 1             | 2.0 |
| Cyclohexane               | 04-MAY-07 16:31                    | 0.120  | 0.52      | ppb v/v           |             | 1             | 0.5 |
| Cyclohexane               | 04-MAY-07 16:31                    | 0.41   | 1.8       | nd/w3             |             | 1             | 1.7 |
| Trichloroethene           | 04-MAY-07 16:31                    | 0.120  | ND        | ppb v/v           |             | $\frac{1}{1}$ | 0.5 |
| Trichloroethene           | 04-MAY-07 16:31                    | 0.64   | ND        | hd/w <sub>3</sub> |             | 1             |     |
| 1,2-Dichloropropane       | 04-MAY-07 16:31                    | 0.123  | ND        | v\v dag           |             | 1             | 2.7 |
| 1,2-Dichloropropane       | 04-MAY-07 16:31                    | 0.57   | ND        | hd/w <sub>3</sub> |             | 1             | 0.5 |
| Bromodichloromethane      | 04-MAY-07 16:31                    | 0.0779 | ND        | v\v dag           |             | 1             | 2.3 |
| Bromodichloromethane      | 04-MAY-07 16:31                    | 0.52   | ND        | hd/w <sub>3</sub> |             |               | 0.5 |
| Heptane                   | 04-MAY-07 16:31                    | 0.101  | 1.0       | ppb v/v           |             | 1             | 3.3 |
| Heptane                   | 04-MAY-07 16:31                    | 0.41   | 4.3       |                   |             | 1             | 0.5 |
| cis-1,3-Dichloropropene   | 04-MAY-07 16:31                    | 0.106  | ND        | µg/m³             |             | 1             | 2.0 |
| cis-1,3-Dichloropropene   | 04-MAY-07 16:31                    | 0.100  |           | v/v dqq           |             | 1             | 0.5 |
| 4-Methyl-2-Pentanone      | 04-MAY-07 16:31                    | 0.116  | ND        | μg/m³             |             | 1             | 2.3 |
| 4-Methyl-2-Pentanone      | 04-MAY-07 16:31                    |        | ND        | ppb v/v           |             | 1             | 0.5 |
| Toluene                   | 04-MAY-07 16:31                    | 0.48   | ND<br>1 4 | μg/m³             |             | 1             | 2.0 |
| Toluene                   | 04-MAY-07 16:31                    |        | 1.4       | ppb v/v           |             | 1             | 0.5 |
| trans-1,3-Dichloropropene | 04-MAY-07 16:31                    | 0.43   | 5.3       | µg/m³             |             | 1             | 1.9 |
| trans-1,3-Dichloropropene | 04-MAY-07 16:31                    | 0.130  | ND        | v/v dqq           |             | 1             | 0.5 |
| 1,1,2-Trichloroethane     | 04-MAY-07 16:31                    | 0.59   | ND        | ug/m³             |             | 1             | 2.3 |
| 1,1,2-Trichloroethane     | 04-MAY-07 16:31                    | 0.0972 | ND        | ppb v/v           |             | 1             | 0.5 |
| Tetrachloroethene         | 04-MAY-07 16:31<br>04-MAY-07 16:31 | 0.53   | ND        | µg/m³             |             | 1             | 2.7 |
| Tetrachloroethene         |                                    | 0.0847 | ND        | ppb v/v           |             | 1             | 0.5 |
| 2-Hexanone                | 04-MAY-07 16:31                    | 0.57   | ND        | µg/m³             |             | 1             | 3.4 |
| 2-Hexanone                | 04-MAY-07 16:31                    | 0.136  | ND        | ppb v/v           |             | 1             | 0.5 |
| Dibromochloromethane      | 04-MAY-07 16:31                    | 0.56   | ND        | μg/m³             |             | 1             | 2.0 |
| Dibromochloromethane      | 04-MAY-07 16:31                    | 0.0792 | ND        | ppb v/v           |             | 1             | 0.5 |
| 1,2-Dibromoethane         | 04-MAY-07 16:31                    | 0.67   | ND        | μg/m³             |             | 1             | 4.2 |
| l,2-Dibromoethane         | 04-MAY-07 16:31                    | 0.119  | ND        | ppb v/v           |             | 1             | 0.5 |
| Chlorobenzene             | 04-MAY-07 16:31                    | 0.91   | ND        | µg/m³             |             | 1             | 3.8 |
|                           | 04-MAY-07 16:31                    | 0.0882 | ND        | ppb v/v           |             | 1             | 0.5 |
| Chlorobenzene             | 04-MAY-07 16:31                    | 0.41   | ND        | μg/m³             |             | 1             | 2.3 |
| Ethylbenzene              | 04-MAY-07 16:31                    | 0.150  | 0.50      | v/v dqq           |             | 1             | 0.5 |
| Ethylbenzene              | 04-MAY-07 16:31                    | 0.65   | 2.2       | µg/m³             |             | 1             | 2.2 |
| n,p-Xylene                | 04-MAY-07 16:31                    | 0.213  | 0.85      | ppb v/v           | J           | 1             | 1.0 |
| n,p-Xylene                | 04-MAY-07 16:31                    | 0.92   | 3.7       | μg/m³             | J           | 1             | 4.3 |
| -Xylene                   | 04-MAY-07 16:31                    | 0.113  | 0.32      | ppb v/v           | J           | 1             | 0.5 |
| -Xylene                   | 04-MAY-07 16:31                    | 0.49   | 1.4       | µg/m³             | J           | 1             | 2.2 |
| Styrene                   | 04-MAY-07 16:31                    | 0.0748 | ND        | ppb v/v           | -           | 1             | 0.5 |
| Styrene                   | 04-MAY-07 16:31                    | 0.32   | ND        | ha/w3             |             | 1             | 2.1 |
| romoform                  | 04-MAY-07 16:31                    | 0.0884 | ND        | ppb v/v           |             | 1             | 0.5 |
| Bromoform                 | 04-MAY-07 16:31                    | 0.90   | ND        | nd/m3             |             | 1             | 5.1 |
| .,1,2,2-Tetrachloroethane | 04-MAY-07 16:31                    | 0.108  | ND        | ppb v/v           | <del></del> | 1             |     |
| .,1,2,2-Tetrachloroethane | 04-MAY-07 16:31                    | 0.74   | ND        | ppp v/v           | <del></del> |               | 0.5 |
| Benzyl Chloride           | 04-MAY-07 16:31                    | 0.136  |           | MA/111.           |             | 1             | 3.4 |



Form RLIMS63A-V1.4 05100710505088

Page 26



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 10-MAY-07 10:50 Client Name..... Weston Solutions, Inc.

DCL Sample Name...: 07E02349 DCL Report Group..: 07E-0352-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units             | Qual.    | Dilution                                         | PQL        |
|------------------------|------------------|--------|--------|-------------------|----------|--------------------------------------------------|------------|
| Benzyl Chloride        | 04-MAY-07 16:31  | 0.70   | ND     | ug/m³             | E-mar-   | 1                                                | 2.6        |
| 4-Ethyl toluene        | 04-MAY-07 16:31  | 0.0983 | ND     | ppb v/v           |          | 1 1                                              | 0.5        |
| 4-Ethyl toluene        | 04-MAY-07 16:31  | 0.48   | ND     | µg/m³             |          | 1 1                                              | 2.5        |
| 1,3,5-Trimethylbenzene | 04-MAY-07 16:31  | 0.112  | 0.14   | ppb v/v           | J        | <del>                                     </del> | 0.5        |
| 1,3,5-Trimethylbenzene | 04-MAY-07 16:31  | 0.55   | 0.67   | ug/m³             | J        | <del>                                     </del> | 2.5        |
| 1,2,4-Trimethylbenzene | 04-MAY-07 16:31  | 0.117  | 0.43   | v\v daa           | J        | <del>                                     </del> |            |
| 1,2,4-Trimethylbenzene | 04-MAY-07 16:31  | 0.58   | 2.1    | nd/m3             | J        | <del>                                     </del> | 0.5        |
| 1,3-Dichlorobenzene    | 04-MAY-07 16:31  | 0.120  | ND     | v\v daa           | <u> </u> | <del> </del>                                     | 2.5        |
| 1,3-Dichlorobenzene    | 04-MAY-07 16:31  | 0.72   | ND     | nd/w <sub>3</sub> |          | + +                                              | 0.5        |
| 1,4-Dichlorobenzene    | 04-MAY-07 16:31  | 0.0987 | ND     | v\v dag           |          | <del>                                     </del> | 3.0        |
| 1,4-Dichlorobenzene    | 04-MAY-07 16:31  | 0.59   | ND     | na/w <sub>3</sub> |          | 1 1                                              | 0.5        |
| 1,2-Dichlorobenzene    | 04-MAY-07 16:31  | 0.0851 | ND     | v\v dag           |          | 1                                                | 3.0        |
| 1,2-Dichlorobenzene    | 04-MAY-07 16:31  | 0.51   | ND     | hd/w <sub>3</sub> |          | 1 1                                              | 0.5        |
| 1,2,4-Trichlorobenzene | 04-MAY-07 16:31  | 0.115  | ND     | v\v dqq           |          | 1 1                                              | 3.0        |
| 1,2,4-Trichlorobenzene | 04-MAY-07 16:31  | 0.85   | ND     | hd/w <sub>3</sub> |          | 1 1                                              | 0.5        |
| Hexachlorobutadiene    | 04-MAY-07 16:31  | 0.119  | ND     | pg/m²             |          | 1                                                | 3.7        |
| Hexachlorobutadiene    | 04-MAY-07 16:31  | 1.3    | ND     | hd/w <sub>3</sub> |          | 1 1                                              | 0.5<br>5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
| Ethanol (5.52)              | 04-MAY-07 16:31  | 3.4    | v\v dag | J     | 1        |
| Unknown fluorocarbon(13.79) | 04-MAY-07 16:31  | 21.    | ppb v/v | J     | 1        |

# BEHR VOC PLUME SITE DAYTON, OHIO DATA VALIDATION REPORT

**Date:** June 5, 2007

Laboratory: DataChem Laboratories, Inc. (DataChem), Salt Lake City, Utah

Laboratory SDG #/Set ID #: BEHR/07E-0361-01

Data Validation Performed By: Lisa Graczyk, Dynamac Corporation (Dynamac),

subcontractor to Weston Solutions, Inc. (Weston)

Weston Analytical Work Order #/TDD #: 20405.016.003.0121.00/S05-0612-007

This data validation report has been prepared by Dynamac, a Weston subcontractor, under the START III Region V contract. This report documents the data validation of air samples collected for the Behr VOC Plume Site that were analyzed for Volatile Organic Compounds (VOC) by U.S. Environmental Protection Agency (U.S. EPA) method TO-15. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Organic Data Review" dated October 1999.

#### **VOCs in Air by U.S. EPA Method TO15**

#### 1. Samples

The following table summarizes the samples for which this data validation is being conducted.

| <u>Samples</u> | <u>Lab ID</u> | <u>Matrix</u> | <u>Date</u><br><u>Collected</u> | <u>Date</u><br><u>Prepared</u> | <u>Date</u><br><u>Analyzed</u> |
|----------------|---------------|---------------|---------------------------------|--------------------------------|--------------------------------|
| EPA-17-SS      | 07E02388      | Air           | 05/02/07                        | NA                             | 05/04/07                       |
| EPA-18-SS      | 07E02389      | Air           | 05/02/07                        | NA                             | 05/04/07                       |
| EPA-19-SS      | 07E02390      | Air           | 05/02/07                        | NA                             | 05/04/07                       |
| EPA-20-SS      | 07E02391      | Air           | 05/02/07                        | NA                             | 05/04/07                       |
| EPA-21-SS      | 07E02392      | Air           | 05/02/07                        | NA                             | 05/04/07                       |

### 2. <u>Holding Times</u>

The samples were analyzed within the required holding time limit of 30 days from sample collection in accordance with method TO-15.

#### 3. Instrument Performance Check

The instrument performance check using bromofluorobenzene (BFB) was performed within the 24-hour period for which the samples were analyzed as required for method TO-15. The BFB standard met the ion abundance criteria specified in method TO-15.

Laboratory WO #: BEHR/07E-0361-01

#### 4. <u>Initial Calibration</u>

For the initial calibration, the percent relative standard deviations (%RSD) for all compounds were less than 30 percent except for propene. The quantitation limits for propene were flagged "UJ" as estimated for this discrepancy. The average relative response factors were all greater than 0.05.

#### 5. <u>Continuing Calibration</u>

The percent differences (%D) in the continuing calibration standard for all target compounds were within the control limit of less than or equal to 25 percent except for propene. The quantitation limits for propene were flagged "UJ" as estimated for this discrepancy.

#### 6. Blanks

The method blank associated with the samples was free of target compound contamination.

# 7. <u>Surrogates</u>

The 4-bromofluorobenzene surrogate spike recoveries in the samples were within the quality control (QC) limits.

#### 8. Laboratory Control Sample (LCS)

The LCS recoveries and LCS duplicate recoveries were within the laboratory-established QC limits of 70 to 130 percent recovery except for the following compounds: propene; chloromethane; vinyl chloride; 1,3-butadiene; bromomethane; and chloroethane. These compounds were all detected low. Since these compounds were not detected in the samples, the quantitation limits were flagged "UJ" as estimated for this discrepancy.

#### 9. <u>Internal Standard Results</u>

The internal standard area counts in the samples were within -50 percent to +100 percent of the area counts of the associated continuing calibration standard. The retention time of the internal standards did not vary more than  $\pm 30$  seconds from the retention time of the associated continuing calibration standard.

Data Validation Report Behr VOC Plume Site DataChem Laboratories

Laboratory WO #: BEHR/07E-0361-01

# 10. Target Compound Identification

A spot-check was performed of the mass spectra for detected compounds. The spot-check confirmed compound identification. DataChem appropriately flagged those results detected above the method detection limit but below the quantitation limit as "J" or estimated.

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0361-01

# **ATTACHMENT**

# DATACHEM LABORATORIES RESULTS SUMMARY



# SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 05100710491954

Page 12



Date Printed....: 10-MAY-07 10:49

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: Not Provided

Sampling Site..... Behr VOC Plume PRP

Release Number....: 0055729

Date Received.....: 04-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared...... Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-17-SS
DCL Sample Name...: 07E02388
DCL Report Group..: 07E-0361-01

Matrix..... AIR

Date Sampled....: 02-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....: X As Received Dried

DCL Analysis Group: G074801D Analysis Method...: T0-15 Instrument Type...: GC/MS V0 Instrument ID....: 5972-0 Column Type....: DB-1

X Primary

☐ Confirmation

#### Analytical Results

|                          | Date            | T      |          | ,                 | <del></del>                                      | ·             |      |
|--------------------------|-----------------|--------|----------|-------------------|--------------------------------------------------|---------------|------|
| Analyte                  | Analyzed        | MDL    | Result   | Units             | Oual.                                            | Dilution      | POL  |
| Propene                  | 04-MAY-07 17:43 | 0.180  | NDUT     |                   | E                                                | 1             | 0.5  |
| Propene                  | 04-MAY-07 17:43 | 0.31   | ND VJ    |                   | <del> </del>                                     | 1             | 0.86 |
| Dichlorodifluoromethane  | 04-MAY-07 17:43 | 0.0669 | 0.55     | ppb v/v           | <u> </u>                                         | 1             | 0.86 |
| Dichlorodifluoromethane  | 04-MAY-07 17:43 | 0.33   | 2.7      | na/w3             |                                                  | 1             | 2.5  |
| Chloromethane            | 04-MAY-07 17:43 | 0.249  | ND U.T   | v\v daa           | <del> </del>                                     | 1             | 0.5  |
| Chloromethane            | 04-MAY-07 17:43 | 0.51   | ND UJ    |                   | <del> </del>                                     | 1             | 1.0  |
| Freon 114                | 04-MAY-07 17:43 | 0.156  | ND       | ppb v/v           | <del> </del>                                     | $\frac{1}{1}$ | 0.5  |
| Freon 114                | 04-MAY-07 17:43 | 1.1    | ND       | nd/w <sub>3</sub> | <del> </del>                                     | 1 1           |      |
| Vinyl Chloride           | 04-MAY-07 17:43 | 0.301  | ND//J    |                   | <del> </del>                                     | 1 1           | 3.5  |
| Vinyl Chloride           | 04-MAY-07 17:43 | 0.77   | ND UJ    | 17.10.00          | <del>                                     </del> | $\frac{1}{1}$ | 0.5  |
| 1,3-Butadiene            | 04-MAY-07 17:43 | 0.346  | NDIJT    |                   |                                                  | $\frac{1}{1}$ | 1.3  |
| 1,3-Butadiene            | 04-MAY-07 17:43 | 0.77   | ND UJ    | nd/w <sub>3</sub> |                                                  |               | 0.5  |
| Bromomethane             | 04-MAY-07 17:43 | 0.215  | ND UJ    | μα/μιν<br>v/v dag | l                                                | 1 1           | 1.1  |
| Bromomethane             | 04-MAY-07 17:43 | 0.83   | ND UT    | nd/w3             |                                                  | 1 1           | 0.5  |
| Chloroethane             | 04-MAY-07 17:43 | 0.388  | ND 1/J   | ppb v/v           |                                                  | 1             | 1.9  |
| Chloroethane             | 04-MAY-07 17:43 | 1.0    | ND VJ    | ha/w3             |                                                  | 1             | 0.5  |
| Freon 11                 | 04-MAY-07 17:43 | 0.0921 | 0.27     |                   |                                                  | 1             | 1.3  |
| Freon 11                 | 04-MAY-07 17:43 | 0.52   | 1.5      | ppb v/v           | J                                                | 1             | 0.5  |
| cis-1,2-Dichloroethene   | 04-MAY-07 17:43 | 0.102  | ND ND    | µg/m³             | J                                                | 1             | 2.8  |
| cis-1,2-Dichloroethene   | 04-MAY-07 17:43 | 0.40   | ND       | v/v dqq           |                                                  | 1             | 0.5  |
| Carbon Disulfide         | 04-MAY-07 17:43 | 0.111  | 0.28     | µg/m³             |                                                  | 1             | 2.0  |
| Carbon Disulfide         | 04-MAY-07 17:43 | 0.35   | 0.28     | v\v dag           | J                                                | 1             | 0.5  |
| Freon 113                | 04-MAY-07 17:43 | 0.0950 |          | ug/m³             | J                                                | 1             | 1.6  |
| Freon 113                | 04-MAY-07 17:43 | 0.0930 | ND       | v/v dqq           |                                                  | 1             | 0.5  |
| Acetone                  | 04-MAY-07 17:43 | 0.113  | ND       | na/w3             | ·                                                | 1             | 3.8  |
| Acetone                  | 04-MAY-07 17:43 | 0.113  | ND<br>ND | v/v dqq           |                                                  | 1             | 0.5  |
| Methylene Chloride       | 04-MAY-07 17:43 | 0.168  |          | ha/w3             |                                                  | 11            | 1.2  |
| Methylene Chloride       | 04-MAY-07 17:43 | 0.58   | ND       | v/v dag           |                                                  | 1             | 0.5  |
| trans-1,2-Dichloroethene | 04-MAY-07 17:43 | 0.118  | ND       | µg/m³             |                                                  | 1             | 1.7  |
| trans-1,2-Dichloroethene | 04-MAY-07 17:43 | 0.118  | ND       | ppb v/v           |                                                  | 1             | 0.5  |
| 1,1-Dichloroethane       | 04-MAY-07 17:43 | 0.116  | ND       | ug/m³             |                                                  | 1             | 2.0  |
| 1,1-Dichloroethane       | 04-MAY-07 17:43 | 0.116  | ND       | v/v dag           |                                                  | 1             | 0.5  |
| Methyl t-Butyl Ether     | 04-MAY-07 17:43 | 0.147  | ND       | ha/w3             |                                                  | 1             | 2.0  |
| Methyl t-Butyl Ether     | 04-MAY-07 17:43 |        | ND       | v/v dag           |                                                  | 1             | 0.5  |
| Vinyl Acetate            | 04-MAY-07 17:43 | 0.53   | ND       | nd/m3             |                                                  | 1             | 1.8  |
| Vinyl Acetate            | 04-MAY-07 17:43 | 0.133  | ND       | v/v dqq           |                                                  | 1             | 0.5  |
| 1,1-Dichloroethene       |                 | 0.47   | ND       | ug/m³             |                                                  | 1             | 1.8  |
| 1,1-Dichloroethene       | 04-MAY-07 17:43 | 0.109  | ND       | v/v dqq           |                                                  | 1             | 0.5  |
| 2-Butanone               | 04-MAY-07 17:43 | 0.43   | ND       | µg/m³             |                                                  | 1             | 2.0  |
| 2-Butanone               | 04-MAY-07 17:43 | 0.182  | ND       | ppb v/v           |                                                  | 1             | 0.5  |
| Ethyl Acetate            | 04-MAY-07 17:43 | 0.54   | ND       | µg/m³             |                                                  | 1             | 1.5  |
| deny incecace            | 04-MAY-07 17:43 | 0.273  | ND       | ppb v/v           |                                                  | 1             | 0.5  |

14 6|5|07

12



Form RLIMS63A-V1.4 05100710491954

Page 13

### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 10-MAY-07 10:49 Client Name..... Weston Solutions, Inc.

DCL Sample Name...: 07E02388 DCL Report Group..: 07E-0361-01

| Analyte                   | Date<br>Analyzed                   | MDL           | D1-       | TT i t.           |       |               |       |
|---------------------------|------------------------------------|---------------|-----------|-------------------|-------|---------------|-------|
| Ethyl Acetate             | <del></del>                        |               | Result    | Units             | Qual. | Dilution      | PQL   |
| Hexane                    | 04-MAY-07 17:43<br>04-MAY-07 17:43 | 0.98          | ND        | ug/m³             |       | 1 1           | 1.8   |
| Hexane                    | 04-MAY-07 17:43                    | 0.121         | 3.0       | ppb v/v           |       | 1 1           | 0.5   |
| Chloroform                | 04-MAY-07 17:43                    | 0.43          | 10.       | nd/w3             | ļ     | 1 1           | 1.8   |
| Chloroform                | 04-MAY-07 17:43                    | 0.115         | ND        | ppb v/v           | ļ     | 1             | 0.5   |
| 1,1,1-Trichloroethane     | 04-MAY-07 17:43                    | 0.56          | ND        | ug/m³             |       | 1 .           | 2.4   |
| 1,1,1-Trichloroethane     | 04-MAY-07 17:43                    | 0.0725        | ND        | ppb v/v           |       | 1             | 0.5   |
| Carbon Tetrachloride      | 04-MAY-07 17:43                    | 0.40          | ND        | ha/w3             |       | 1 1           | 2.7   |
| Carbon Tetrachloride      | 04-MAY-07 17:43                    | 0.0657        | ND        | v/v dqq           |       | 1 1           | 0.5   |
| Benzene                   | 04-MAY-07 17:43                    |               | ND        | µg/m³             |       | 1 1           | 3.1   |
| Benzene                   | 04-MAY-07 17:43                    | 0.102         | 0.63      | ppb v/v           |       | 1 1           | 0.5   |
| Tetrahydrofuran           | 04-MAY-07 17:43                    |               | 2.0       | ug/m³             |       | 1.            | 1.6   |
| Tetrahydrofuran           | 04-MAY-07 17:43                    | 0.227         | ND        | ppb v/v           |       | 1             | 0.5   |
| 1,2-Dichloroethane        | 04-MAY-07 17:43                    |               | ND        | µg/m³             |       | 1             | 1.5   |
| 1,2-Dichloroethane        | 04-MAY-07 17:43                    | 0.153         | ND        | ppb v/v           |       | 1             | 0.5   |
| Cyclohexane               | 04-MAY-07 17:43                    | 0.82          | ND<br>1 4 | µg/m³             |       | 1             | 2.0   |
| Cyclohexane               | 04-MAY-07 17:43                    | 0.120         | 1.4       | ppb v/v           |       | 1             | 0.5   |
| Trichloroethene           | 04-MAY-07 17:43                    |               | 4.7       | µg/m³             |       | 1             | 1.7   |
| Trichloroethene           | 04-MAY-07 17:43                    | 0.120<br>0.64 | ND        | ppb v/v           |       | 1             | 0.5   |
| 1,2-Dichloropropane       | 04-MAY-07 17:43                    | 0.64          | ND        | µg/m³             |       | 1             | 2.7   |
| 1,2-Dichloropropane       | 04-MAY-07 17:43                    | 0.123         | ND        | ppb v/v           |       | 1             | 0.5   |
| Bromodichloromethane      | 04-MAY-07 17:43                    | -0.0779       | ND        | ug/m³             |       | 1             | 2.3   |
| Bromodichloromethane      | 04-MAY-07 17:43                    |               | ND        | ppb v/v           |       | 1             | 0.5   |
| Heptane                   | 04-MAY-07 17:43                    | 0.52          | ND        | ug/m³             |       | 1             | 3.3   |
| Heptane                   | 04-MAY-07 17:43                    |               | 2.4       | v\v dqq           |       | 1             | 0.5   |
| cis-1,3-Dichloropropene   | 04-MAY-07 17:43                    | 0.41          | 9.7       | µg/m³             |       | 1 1           | 2.0   |
| cis-1,3-Dichloropropene   | 04-MAY-07 17:43                    | 0.108         | ND        | v/v dqq           |       | 1             | 0.5   |
| 4-Methyl-2-Pentanone      | 04-MAY-07 17:43                    | 0.48          | ND        | µg/m³             |       | 1             | 2.3   |
| 4-Methyl-2-Pentanone      | 04-MAY-07 17:43                    | 0.48          | ND        | v/v dqq           |       | 1             | 0.5   |
| Toluene                   | 04-MAY-07 17:43                    | 0.115         | ND<br>2.5 | µg/m³             |       | 1             | 2.0   |
| Toluene                   | 04-MAY-07 17:43                    | 0.115         |           | _ppb_v/v          |       | 1             | 0.5   |
| trans-1,3-Dichloropropene | 04-MAY-07 17:43                    | 0.130         | 9.4       | µg/m³             |       | 1             | 1.9   |
| trans-1,3-Dichloropropene | 04-MAY-07 17:43                    | 0.130         | ND        | ppb v/v           |       | 1             | 0.5   |
| 1,1,2-Trichloroethane     | 04-MAY-07 17:43                    | 0.0972        | ND<br>ND  | µg/m³             |       | 1             | 2.3 - |
|                           | 04-MAY-07 17:43                    | 0.53          | ND        | ppb v/v           |       | 1             | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.0847        | ND        | µg/m³             |       | 1             | 2.7   |
|                           | 04-MAY-07 17:43                    | 0.57          | ND        | ppb v/v           |       | 1 +           | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.136         | ND        | ug/m³             |       | 1             | 3.4   |
|                           | 04-MAY-07 17:43                    | 0.56          | ND        | ppb v/v           |       | 1             | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.0792        | ND        | ppb v/v           |       | 1             | 2.0   |
|                           | 04-MAY-07 17:43                    | 0.67          | ND        |                   |       | 1             | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.119         | ND        | ppb v/v           |       | 1             | 4.2   |
| 1 0 7 13                  | 04-MAY-07 17:43                    | 0.91          | ND        | ha/w <sub>3</sub> |       | 1             | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.0882        | ND        | ppb v/v           |       | 1             | 3.8   |
|                           | 04-MAY-07 17:43                    | 0.41          | ND        | nd/w <sub>3</sub> |       | 1 1           | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.150         | 1.3       | ppb v/v           |       | 1             | 2.3   |
|                           | 04-MAY-07 17:43                    | 0.65          | 5.8       |                   |       | 1             | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.213         | 2.1       | bbp n/n           |       | 1             | 2.2   |
|                           | 04-MAY-07 17:43                    | 0.92          | 9.1       | hd/w <sub>3</sub> |       | 1             | 1.0   |
|                           | 04-MAY-07 17:43                    | 0.113         | 0.96      | ppb v/v           |       | 1             | 4.3   |
|                           | 04-MAY-07 17:43                    | 0.49          | 4.2       | ha/w³             |       | 1             | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.0748        | ND ND     |                   |       | · 1           | 2.2   |
|                           | 04-MAY-07 17:43                    | 0.32          | ND        | ha/w³             |       | 1             | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.0884        | ND        | bbp A\A           |       | 1             | 2.1   |
|                           | 04-MAY-07 17:43                    | 0.90          | ND        |                   |       | 1             | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.108         | ND        | ppb v/v           |       | 1             | 5.1   |
|                           | 04-MAY-07 17:43                    | 0.74          | ND        | ha/w <sub>3</sub> |       | 1             | 0.5   |
|                           | 04-MAY-07 17:43                    | 0.136         | ND        | ppb v/v           |       | $\frac{1}{1}$ | 3.4   |
|                           |                                    |               |           | PPD V/V           |       | 1             | 0.5   |



Form RLIMS63A-V1.4 05100710491954

Page 14



### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 10-MAY-07 10:49 Client Name..... Weston Solutions, Inc.

DCL Sample Name...: 07E02388 DCL Report Group..: 07E-0361-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Qual. | Dilution | PQL |
|------------------------|------------------|--------|--------|---------|-------|----------|-----|
| Benzyl Chloride        | 04-MAY-07 17:43  | 0.70   | ND     | nd/w3   |       | 1        | 2.6 |
| 4-Ethyl toluene        | 04-MAY-07 17:43  | 0.0983 | 0.25   | v/v dag | J     | 1 1      | 0.5 |
| 4-Ethyl toluene        | 04-MAY-07 17:43  | 0.48   | 1.2    | µg/m³   | J     | 1 1      | 2.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 17:43  | 0.112  | 0.36   | v/v dag | J     | 1        | 0.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 17:43  | 0.55   | 1.8    | ug/m³   | J     | 1 1      | 2.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 17:43  | 0.117  | 1.6    | v\v daa |       | 1 1      | 0.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 17:43  | 0.58   | 8.1    | ug/m³   |       | 1 1      | 2.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 17:43  | 0.120  | ND     | ppb v/v |       | 1 1      | 0.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 17:43  | 0.72   | ND     | ug/m³   |       | 1 1      | 3.0 |
| 1,4-Dichlorobenzene    | 04-MAY-07 17:43  | 0.0987 | ND     | ppb v/v |       | 1 1      | 0.5 |
| 1,4-Dichlorobenzene    | 04-MAY-07 17:43  | 0.59   | ND     | hd/m3   |       | 1 1      | 3.0 |
| 1,2-Dichlorobenzene    | 04-MAY-07 17:43  | 0.0851 | ND     | v/v dag |       | 1 1      | 0.5 |
| 1,2-Dichlorobenzene    | 04-MAY-07 17:43  | 0.51   | ND     | µg/m³   |       | 1 1      | 3.0 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 17:43  | 0.115  | ND     | ppb v/v |       | 1 1      | 0.5 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 17:43  | 0.85   | ND     | ug/m³   |       | 1 1      | 3.7 |
| Hexachlorobutadiene    | 04-MAY-07 17:43  | 0.119  | ND     | v/v dag |       | 1 1      | 0.5 |
| Hexachlorobutadiene    | 04-MAY-07 17:43  | 1.3    | ND     | µg/m³   |       | 1        | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed  | Result | Units   | Qual. | Dilution |
|-----------------------------|-------------------|--------|---------|-------|----------|
| Propane(4.33)               | 04-MAY-07 17:43   | 7:7    | v/v dag | J     | 1        |
| Isobutane(4.66)             | 04-MAY-07 17:43   | 2.5    | ppb v/v | J     | 1        |
| Butane (4.95)               | 04-MAY-07 17:43   | 3.1    | v\v dag | J     | 1        |
| Ethanol (5.51)              | 04-MAY-07 17:43   | 3.4    | ppb v/v | J     | 1        |
| Pentane(6.29)               | . 04-MAY-07 17:43 | 3.0    | v\v dag | J     | 1        |
| Pentane, 2-methyl-(7.70)    | 04-MAY-07 17:43   | 2.2    | v\v dag | J     | 1        |
| CYCLOHEXANE, METHYL-(11.46) | 04-MAY-07 17:43   | 2.7    | v/v dqq | J     | 1        |
| Unknown fluorocarbon(13.80) | 04-MAY-07 17:43   | 31.    | v\v dag | J     | 1        |
| Nonane (15.16)              | 04-MAY-07 17:43   | 2.6    | ppb v/v | J     | 1        |
| Decane (17.00)              | 04-MAY-07 17:43   | 3.0    | v/v dqq | J     | 1        |
| Undecane (18.70)            | 04-MAY-07 17:43   | 3.7    | v\v dag | J     | 1        |
| Dodecane(20.25)             | 04-MAY-07 17:43   | 3.4    | v\v dag | J     | 1 1      |



# 05100710491954

Page 15

Form RLIMS63A-V1.4

### SAMPLE ANALYSIS DATA SHEET

Date Printed......: 10-MAY-07 10:49

Client Name..... : Weston Solutions, Inc.

Client Ref Number ...: Not Provided

Sampling Site..... Behr VOC Plume PRP

Release Number....: 0055729

Date Received.....: 04-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume....: Not Required

Client Sample Name: EPA-18-SS DCL Sample Name...: 07E02389 DCL Report Group..: 07E-0361-01

Matrix....: AIR

Date Sampled....: 02-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....:

☒ As Received □ Dried

DCL Analysis Group: G074801D Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1

> X Primary ☐ Confirmation

|                          | Date            | 7      | <del></del> |                   | ·            |                                              |            |
|--------------------------|-----------------|--------|-------------|-------------------|--------------|----------------------------------------------|------------|
| Analyte                  | Analyzed        | MDL    | Result      | Units             | Oual.        | Dilution                                     | POL        |
| Propene                  | 04-MAY-07 18:52 | 0.180  | ND 17.7     | v/v dqq           | ~            | 1                                            | 0.5        |
| Propene                  | 04-MAY-07 18:52 | 0.31   | ND U        |                   |              | 1                                            | 0.86       |
| Dichlorodifluoromethane  | 04-MAY-07 18:52 | 0.0669 | 0.53        | ppb v/v           |              | 1                                            | 0.86       |
| Dichlorodifluoromethane  | 04-MAY-07 18:52 | 0.33   | 2.6         | ug/m³             | <del> </del> | 1                                            | 2.5        |
| Chloromethane            | 04-MAY-07 18:52 | 0.249  | ND I) J     |                   | <u> </u>     | 1                                            | 0.5        |
| Chloromethane            | 04-MAY-07 18:52 | 0.51   | ND UJ       |                   | <del> </del> | 1                                            | 1.0        |
| Freon 114                | 04-MAY-07 18:52 | 0.156  | ND          | v\v dġa           |              | 1                                            | 0.5        |
| Freon 114                | 04-MAY-07 18:52 | 1.1    | ND          | ug/m³             | <del> </del> | 1                                            | 3.5        |
| Vinyl Chloride           | 04-MAY-07 18:52 | 0.301  | ND UJ       | ppb v/v           |              | 1                                            | 0.5        |
| Vinyl Chloride           | 04-MAY-07 18:52 | 0.77   | ND UJ       |                   | <del> </del> | 1                                            | 1.3        |
| 1,3-Butadiene            | 04-MAY-07 18:52 | 0.346  | ND IJJ      | v\v dgg           | <del> </del> | 1                                            | 0.5        |
| 1,3-Butadiene            | 04-MAY-07 18:52 | 0.77   | ND I        |                   | <del> </del> | 1                                            |            |
| Bromomethane             | 04-MAY-07 18:52 | 0.215  | ND LA       |                   | <del></del>  | 1                                            | 1.1<br>0.5 |
| Bromomethane             | 04-MAY-07 18:52 | 0.83   | ND UJ       | na/w3             |              | 1                                            |            |
| Chloroethane             | 04-MAY-07 18:52 | 0.388  | ND UJ       |                   |              | 1                                            | 1.9        |
| Chloroethane             | 04-MAY-07 18:52 | 1.0    | NDIA        | nd/w <sub>3</sub> | -            | $\begin{bmatrix} -\frac{1}{1} \end{bmatrix}$ | 0.5<br>1.3 |
| Freon 11                 | 04-MAY-07 18:52 | 0.0921 | 0.30        | ppb v/v           | J            | 1                                            | 0.5        |
| Freon 11                 | 04-MAY-07 18:52 | 0.52   | 1.7         | na/w <sub>3</sub> | J            | 1                                            | 2.8        |
| cis-1,2-Dichloroethene   | 04-MAY-07 18:52 | 0.102  | 12.         | v\v daa           |              | 1                                            |            |
| cis-1,2-Dichloroethene   | 04-MAY-07 18:52 | 0.40   | 47.         | na/w <sub>3</sub> |              | 1                                            | 0.5        |
| Carbon Disulfide         | 04-MAY-07 18:52 | 0.111  | 0.30        | v\v dag           | J            | 1                                            | 2.0        |
| Carbon Disulfide         | 04-MAY-07 18:52 | 0.35   | 0.93        | na/w <sub>3</sub> | J            | 1                                            | 0.5        |
| Freon 113                | 04-MAY-07 18:52 | 0.0950 | 0.30        | v\v daa           | J            | 1                                            | 1.6        |
| Freon 113                | 04-MAY-07 18:52 | 0.73   | 2.3         | na/w <sub>3</sub> | J            | 1                                            | 0.5        |
| Acetone                  | 04-MAY-07 18:52 | 0.113  | ND          | ppb v/v           | <u> </u>     |                                              | 3.8        |
| Acetone                  | 04-MAY-07 18:52 | 0.27   | ND          | ha/w <sub>3</sub> |              | $\frac{1}{1}$                                | 0.5        |
| Methylene Chloride       | 04-MAY-07 18:52 | 0.168  | ND          | v/v dag           |              | 1                                            | 1,2        |
| Methylene Chloride       | 04-MAY-07 18:52 | 0.58   | ND          | nd/w <sub>3</sub> |              | 1                                            | 0.5        |
| trans-1,2-Dichloroethene | 04-MAY-07 18:52 | 0.118  | 1.6         | v\v dag           |              | $\frac{1}{1}$                                | 1.7        |
| trans-1,2-Dichloroethene | 04-MAY-07 18:52 | 0.47   | 6.3         | hd/w <sub>3</sub> |              | <del> +</del>                                | 0.5        |
| 1,1-Dichloroethane       | 04-MAY-07 18:52 | 0.116  | 1.3         | v/v dag           |              | 1                                            | 2.0        |
| 1,1-Dichloroethane       | 04-MAY-07 18:52 | 0.47   | 5.4         | na/w <sub>3</sub> |              |                                              | 0.5        |
| Methyl t-Butyl Ether     | 04-MAY-07 18:52 | 0.147  | ND ND       | v/v dag           |              | 1                                            | 2.0        |
| Methyl t-Butyl Ether     | 04-MAY-07 18:52 | 0.53   | ND          | nd/w <sub>3</sub> |              | 1                                            | 0.5        |
| Vinyl Acetate            | 04-MAY-07 18:52 | 0.133  | ND          | v\v daa           |              |                                              | 1.8        |
| Vinyl Acetate            | 04-MAY-07 18:52 | 0.47   | ND          | ha/w <sub>3</sub> |              | 1 1                                          | 0.5        |
| 1,1-Dichloroethene       | 04-MAY-07 18:52 | 0.109  | ND          | v/v daa           |              |                                              | 1.8        |
| 1,1-Dichloroethene       | 04-MAY-07 18:52 | 0.43   | ND          | ha/w3             |              | 1                                            | 0.5        |
| 2-Butanone               | 04-MAY-07 18:52 | 0.182  | ND          | ν\ν daa           |              | 1                                            | 2.0        |
| 2-Butanone               | 04-MAY-07 18:52 | 0.54   | ND          | na/w3             |              | 1                                            | 0.5        |
| Ethyl Acetate            | 04-MAY-07 18:52 | 0.273  | ND          | bpp A/A           |              | $-\frac{1}{1}$                               | 1.5<br>0.5 |



Form RLIMS63A-V1.4 05100710491954

Page 16



#### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:49 Client Name..... Weston Solutions, Inc.

DCL Sample Name...: 07E02389 DCL Report Group. .: 07E-0361-01

| Analyte                   | Date<br>Analyzed  | MDL    | Result | Units             | Qual.        | Dilution      | PQL               |
|---------------------------|-------------------|--------|--------|-------------------|--------------|---------------|-------------------|
| Ethyl Acetate             | 04-MAY-07 18:52   | 0.98   | ND .   | ug/m³             | E-W-:        | 1             | 1.8               |
| Hexane                    | 04-MAY-07 18:52   | 0.121  | 3.7    | v/v dag           | <del> </del> | 1 1           | 0.5               |
| Hexane                    | 04-MAY-07 18:52   | 0.43   | 13,    | nd/w <sub>3</sub> |              | 1             | 1.8               |
| Chloroform                | 04-MAY-07 18:52   | 0.115  | 1.5    | v/v dag           |              | $\frac{1}{1}$ | 0.5               |
| Chloroform                | 04-MAY-07 18:52   | 0.56   | 7.5    | hd/w <sub>3</sub> |              | $\frac{1}{1}$ | 2.4               |
| 1,1,1-Trichloroethane     | 04-MAY-07 18:52   | 0.0725 | 9.8    | v\v dag           |              | $\frac{1}{1}$ | 0.5               |
| 1,1,1-Trichloroethane     | 04-MAY-07 18:52   | 0.40   | 54.    | hd/w <sub>3</sub> |              | $\frac{1}{1}$ |                   |
| Carbon Tetrachloride      | 04-MAY-07 18:52   | 0.0657 | 0.12   | ppb v/v           | J            | 1 1           | 0.5               |
| Carbon Tetrachloride      | 04-MAY-07 18:52   | 0.41   | 0.73   | hd/w <sub>3</sub> | J            | 1 1           |                   |
| Benzene                   | 04-MAY-07 18:52   | 0.102  | 0.91   | ppb v/v           | 0            | 1 1           | 3.1<br>0.5        |
| Benzene                   | 04-MAY-07 18:52   | 0.33   | 2.9    | nd/m3             |              | 1 1           |                   |
| Tetrahydrofuran           | 04-MAY-07 18:52   | 0.227  | ND     | ppb v/v           |              | $\frac{1}{1}$ | 1.6<br>0.5        |
| Tetrahydrofuran           | 04-MAY-07 18:52   | 0.67   | ND     | hd/m3             |              | $\frac{1}{1}$ |                   |
| 1,2-Dichloroethane        | 04-MAY-07 18:52   | 0.153  | ND     | ppb v/v           |              | 1 1           | 1.5               |
| 1,2-Dichloroethane        | 04-MAY-07 18:52   | 0.62   | ND     | hd/w <sub>3</sub> |              | $\frac{1}{1}$ | 0.5               |
| Cyclohexane               | 04-MAY-07 18:52   | 0.120  | 1.3    | ppb v/v           |              | 1             | 2.0               |
| Cyclohexane               | 04-MAY-07 18:52   | 0.41   | 4.6    | hd/w <sub>3</sub> |              | $\frac{1}{1}$ | 0.5               |
| Trichloroethene           | 04-MAY-07 18:52   | 1.2    | 580    | v\v dag           | E            | 10            | 1.7<br>5.0        |
| Trichloroethene           | 04-MAY-07 18:52   | 6.4    | 3100   | hd/w <sub>3</sub> | E            | 10            | 27.               |
| 1,2-Dichloropropane       | 04-MAY-07 18:52   | 0.123  | ND     | v\v dqq           | - 13         | 1             | 0.5               |
| 1,2-Dichloropropane       | 04-MAY-07 18:52   | 0.57   | ND     | nd/w <sub>3</sub> |              | 1             | 2.3               |
| Bromodichloromethane      | 04-MAY-07 18:52   | 0.0779 | ND     | v\v dag           |              | $\frac{1}{1}$ | 0.5               |
| Bromodichloromethane      | 04-MAY-07 18:52   | 0.52   | ND     | nd/w <sub>3</sub> |              | $\frac{1}{1}$ |                   |
| Heptane                   | 04-MAY-07 18:52   | 0.101  | 2.8    | v\v dag           |              | 1             | 3.3<br>0.5        |
| Heptane                   | 04-MAY-07 18:52   | 0.41   | 11.    | hd/w <sub>3</sub> |              | 1             |                   |
| cis-1,3-Dichloropropene   | 04-MAY-07 18:52   | 0.106  | ND     | v\v dag           |              | 1             | 2.0               |
| cis-1,3-Dichloropropene   | 04-MAY-07 18:52   | 0.48   | ND     | hd/w <sub>3</sub> |              | 1             | 0.5               |
| 4-Methyl-2-Pentanone      | 04-MAY-07 18:52   | 0.116  | ND     | v/v dqq           |              | 1             | 2.3<br>0.5        |
| 4-Methyl-2-Pentanone      | 04-MAY-07 18:52   | 0.48   | ND     | nd/w <sub>3</sub> |              | 1             |                   |
| Toluene                   | 04-MAY-07 18:52   | 0.115  | 3.6    | v\v daa           |              | 1             | 2.0               |
| Toluene                   | 04-MAY-07 18:52   | 0.43   | 14.    | nd/m3             |              | 1             | 0.5<br>1.9        |
| trans-1,3-Dichloropropene | 04-MAY-07 18:52   | 0.130  | ND ND  | ppb v/v           |              | 1             |                   |
| trans-1,3-Dichloropropene | 04-MAY-07 18:52   | 0.59   | ND     | hd/m3             |              | 1             | 0.5<br>2.3 *      |
| 1,1,2-Trichloroethane     | 04-MAY-07 18:52   | 0.0972 | ND     | ppb v/v           |              | 1             |                   |
| 1,1,2-Trichloroethane     | 04-MAY-07 18:52   | 0.53   | ND     | hd/w <sub>3</sub> |              | 1             | .0.5              |
| Tetrachloroethene         | 04-MAY-07 18:52   | 0.85   | 670    | ppb v/v           | E            | 10            | 2.7               |
| Tetrachloroethene         | 04-MAY-07 18:52   | 5.7    | 4500   | ha/w <sub>3</sub> | E            | 10            | 5.0               |
| 2-Hexanone                | 04-MAY-07 18:52   | 0.136  | ND     | ppb v/v           |              | 1             | 34.               |
| 2-Hexanone                | 04-MAY-07 18:52   | 0.56   | ND     | hd/w <sub>3</sub> |              | 1 +           | 0.5               |
| Dibromochloromethane      | 04-MAY-07 18:52   | 0.0792 | ND     | ppb v/v           |              | 1             | 2.0               |
| Dibromochloromethane      | 04-MAY-07 18:52   | 0.67   | ND     | hd/w <sub>3</sub> |              | 1             | 0.5               |
| 1,2-Dibromoethane         | 04-MAY-07 18:52   | 0.119  | ND     | ppb v/v           |              | $\frac{1}{1}$ | <u>4.2</u><br>0.5 |
| 1,2-Dibromoethane         | 04-MAY-07 18:52   | 0.91   | ND     | µg/m³             |              | 1             |                   |
| Chlorobenzene             | 04-MAY-07 18:52   | 0.0882 | ND     | v/v dag           |              | 1             | 3.8               |
| Chlorobenzene             | 04-MAY-07 18:52   | 0.41   | ND     | ppb v/v           |              | 1             | 0.5               |
| Ethylbenzene              | 04-MAY-07 18:52   | 0.150  | 1.8    | ppb v/v           |              | 1             | 2.3               |
| Ethylbenzene              | 04-MAY-07 18:52   | 0.65   | 8.0    | ng/m³             |              | 1             | 0.5               |
| m,p-Xylene                | 04-MAY-07 18:52   | 0.213  | 2.2    | ppb v/v           |              | 1             | 2.2               |
| m,p-Xylene                | 04-MAY-07 18:52   | 0.92   | 9.7    | ng/m³             |              | 1             | 1.0               |
| o-Xylene                  | 04-MAY-07 18:52   | 0.113  | 1.1    | ppb v/v           |              | 1             | 4.3<br>0.5        |
| o-Xylene                  | 04-MAY-07 18:52   | 0.49   | 4.6    | hg/m³             |              | 1             |                   |
| Styrene                   | 04-MAY-07 18:52   | 0.0748 | ND     | ppb v/v           |              | 1             | 2.2               |
| Styrene                   | 04-MAY-07 18:52   | 0.32   | ND     | ha/w3             |              |               | 0.5               |
| Bromoform                 | 04-MAY-07 18:52   | 0.0884 | ND     | ppb v/v           |              | 1             | 2.1               |
| Bromoform                 | 04-MAY-07 18:52   | 0.90   | ND     |                   |              | 1             | 0.5               |
| 1,1,2,2-Tetrachloroethane | 04-MAY-07 18:52   | 0.108  | ND     | µg/m³             |              | 1             | 5.1               |
| 1,1,2,2-Tetrachloroethane | 04-MAY-07 18:52   | 0.74   |        | ppb v/v           |              | 1             | 0.5               |
| Benzyl Chloride           | 04-MAY-07 18:52   | 0.136  | ND     | µg/m³             |              | 1             | 3.4               |
|                           | 104 1141 07 10:32 | 0.130  | ND     | ppb. v/v          |              | 1             | 0.5               |



Form RLIMS63A-V1.4 05100710491954

Page 17



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 10-MAY-07 10:49 Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E02389 DCL Report Group..: 07E-0361-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL     | Result | Units   | Oual. | Dilution | PQL |
|------------------------|------------------|---------|--------|---------|-------|----------|-----|
| Benzyl Chloride        | 04-MAY-07 18:52  | 0.70    | ND     | ug/m³   | ~     | 1        | 2.6 |
| 4-Ethyl toluene        | 04-MAY-07 18:52  | 0.0983  | 0.31   | v\v dgg | J     | 1 1      | 0.5 |
| 4-Ethyl toluene        | 04-MAY-07 18:52  | 0.48    | 1.5    | µg/m³   | J     | 1        | 2.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 18:52  | 0.112   | 0.37   | v\v dag | J     | 1        | 0.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 18:52  | 0.55    | 1.8    | ug/m³   | J.    | 1 1      | 2.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 18:52  | 0.117   | 1.7    | v/v dag |       | 1        | 0.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 18:52  | 0.58    | 8.3    | μα/m³   |       | 1        | 2.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 18:52  | - 0.120 | ND     | v/v dag |       | 1 1      | 0.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 18:52  | 0.72    | ND     | ug/m³   |       | 1        | 3.0 |
| 1,4-Dichlorobenzene    | 04-MAY-07 18:52  | 0.0987  | ND     | ppb v/v |       | 1        | 0.5 |
| 1,4-Dichlorobenzene    | 04-MAY-07 18:52  | 0.59    | ND     | μg/m³   |       | 1        | 3.0 |
| 1,2-Dichlorobenzene    | 04-MAY-07 18:52  | 0.0851  | ND     | ppb v/v |       | 1        | 0.5 |
| 1,2-Dichlorobenzene    | 04-MAY-07 18:52  | 0.51    | ND     | µg/m³   |       | 1        | 3.0 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 18:52  | 0.115   | ND     | ppb v/v |       | 1        | 0.5 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 18:52  | 0.85    | .ND    | ug/m³   |       | 1        | 3.7 |
| Hexachlorobutadiene    | 04-MAY-07 18:52  | 0.119   | ND     | ppb v/v |       | 1        | 0.5 |
| Hexachlorobutadiene    | 04-MAY-07 18:52  | 1.3     | ND     | µg/m³   |       | 1        | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Oual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
| Isobutane(4.66)             | 04-MAY-07 18:52  | 3.1    | v\v dag | J     | 1        |
| Butane (4.94)               | 04-MAY-07 18:52  | 3.4    | v\v dag | J     | 1 1      |
| Ethanol (5.53)              | 04-MAY-07 18:52  | 4.3    | v\v dag | J     | 1        |
| Butane, 2-methyl-(5.86)     | 04-MAY-07 18:52  | 2.6    | v\v dag | Ţ     | 1 1      |
| Pentane (6.29)              | 04-MAY-07 18:52  | 4.6    | v\v daa | J     | 1        |
| Pentane, 2-methyl-(7.71)    | 04-MAY-07 18:52  | 2.7    | ppb v/v | Ţ     | 1        |
| CYCLOHEXANE, METHYL-(11.47) | 04-MAY-07 18:52  | 3.8    | v\v dag | Ţ     | 1        |
| Unknown fluorocarbon(13.79) | 04-MAY-07 18:52  | 16.    | ppb v/v | J     | 1        |



# Form RLIMS63A-V1.4 05100710491954

Page 18

#### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:49

Client Name..... Weston Solutions, Inc.

Client Ref Number ...: Not Provided

Sampling Site..... Behr VOC Plume PRP

Release Number....: 0055729

Date Received.....: 04-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared...... Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume....: Not Required

Client Sample Name: EPA-19-SS DCL Sample Name...: 07E02390 DCL Report Group..: 07E-0361-01

Matrix....: AIR

Date Sampled....: 02-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis.....: ☒ As Received ☐ Dried

DCL Analysis Group: G074801D Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type.....: DB-1

X Primary

☐ Confirmation

| Propense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyte                  | Date<br>Analyzed | MDL   | Result | Units | Qual.                                            | Dilution    | POL |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-------|--------|-------|--------------------------------------------------|-------------|-----|
| Propene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Propene                  | 04-MAY-07 20:00  | 0.180 |        |       | Zuu.                                             |             |     |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                  |       |        |       | <del>                                     </del> | +           |     |
| Dichlorodifiluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dichlorodifluoromethane  |                  |       |        |       |                                                  |             |     |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dichlorodifluoromethane  | .04-MAY-07 20:00 |       |        |       | -                                                |             |     |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chloromethane            | 04-MAY-07 20:00  |       |        |       |                                                  |             |     |
| Freen 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chloromethane            |                  |       |        |       | <b></b>                                          | <del></del> |     |
| Freen 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Freon 114                |                  |       |        |       |                                                  |             |     |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                  |       |        |       |                                                  |             |     |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 04-MAY-07 20:00  |       |        |       |                                                  |             |     |
| 1,3-Butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vinyl Chloride           |                  |       |        |       |                                                  |             |     |
| 1.3 - Butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,3-Butadiene            |                  |       |        |       |                                                  |             |     |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,3-Butadiene            |                  |       |        |       |                                                  |             |     |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromomethane             |                  |       |        |       |                                                  |             |     |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromomethane             |                  |       |        |       |                                                  |             |     |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chloroethane             |                  |       |        |       |                                                  |             |     |
| Freon 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chloroethane             |                  |       |        |       |                                                  |             |     |
| Freon 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Freon 11                 |                  |       |        |       | <del>-</del>                                     |             |     |
| cis-1,2-Dichloroethene         04-MAY-07 20:00         0.102         ND         ppb v/v         1         0.5           Cis-1,2-Dichloroethene         04-MAY-07 20:00         0.40         ND         µg/m³         1         2.0           Carbon Disulfide         04-MAY-07 20:00         0.111         0.26         ppb v/v         J         1         0.5           Freon Disulfide         04-MAY-07 20:00         0.35         0.80         µg/m³         J         1         0.5           Freon 113         04-MAY-07 20:00         0.0950         ND         ppb v/v         J         1         0.5           Freon 113         04-MAY-07 20:00         0.73         ND         µg/m³         J         1         0.5           Acetone         04-MAY-07 20:00         0.73         ND         µg/m³         J         0.5           Acetone         04-MAY-07 20:00         0.27         39.         µg/m³         J         1.2           Methylene Chloride         04-MAY-07 20:00         0.168         ND         ppb v/v         J         0.5           Methylene Chloride         04-MAY-07 20:00         0.58         ND         µg/m³         J         1.7           Methylene Chloride                                                                                                                                                                                                                                                                    | Freon 11                 |                  |       |        |       |                                                  |             |     |
| Cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cis-1,2-Dichloroethene   | 04-MAY-07 20:00  |       |        |       |                                                  |             |     |
| Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cis-1,2-Dichloroethene   | 04-MAY-07 20:00  |       |        |       |                                                  |             |     |
| Carbon Disulfide         04-MAY-07 20:00         0.35         0.80         μg/m³         J         1         1.6           Freon 113         04-MAY-07 20:00         0.0950         ND         ppb v/v         1         0.5           Freon 113         04-MAY-07 20:00         0.73         ND         μg/m³         1         3.8           Acetone         04-MAY-07 20:00         0.113         17.         ppb v/v         1         0.5           Acetone         04-MAY-07 20:00         0.27         39.         μg/m³         1         1.2           Methylene Chloride         04-MAY-07 20:00         0.168         ND         ppb v/v         1         0.5           Methylene Chloride         04-MAY-07 20:00         0.58         ND         μg/m³         1         1.7           Methylene Chloride         04-MAY-07 20:00         0.58         ND         μg/m³         1         1.7           trans-1,2-Dichloroethene         04-MAY-07 20:00         0.118         ND         ppb v/v         1         0.5           1,1-Dichloroethane         04-MAY-07 20:00         0.47         ND         μg/m³         1         2.0           Methyl t-Butyl Ether         04-MAY-07 20:00         0.147 <t< td=""><td></td><td>04-MAY-07 20:00</td><td></td><td></td><td></td><td>т т</td><td></td><td></td></t<>                                                                                                                                                |                          | 04-MAY-07 20:00  |       |        |       | т т                                              |             |     |
| Freon 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carbon Disulfide         |                  |       |        |       |                                                  |             |     |
| Freen 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                  |       |        |       | <u> </u>                                         |             |     |
| Acetone 04-MAY-07 20:00 0.113 17. ppb v/v 1 0.5 Acetone 04-MAY-07 20:00 0.27 39. µg/m³ 1 1.2 Methylene Chloride 04-MAY-07 20:00 0.168 ND ppb v/v 1 0.5 Methylene Chloride 04-MAY-07 20:00 0.58 ND µg/m³ 1 1.7  Methylene Chloride 04-MAY-07 20:00 0.58 ND µg/m³ 1 1.7  Methylene Chloride 04-MAY-07 20:00 0.58 ND µg/m³ 1 1.7  Methylene Chloride 04-MAY-07 20:00 0.118 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.118 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.118 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.118 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.118 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.118 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.116 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.116 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.116 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.147 ND µg/m³ 1 2.0  Methylene Chloride 04-MAY-07 20:00 0.133 ND µg/m³ 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.133 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.109 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.109 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.182 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.182 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.54 ND µg/m³ 1 1.8  Methylene Chloride 04-MAY-07 20:00 0.182 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.54 ND µg/m³ 1 1.5 | Freon 113                |                  |       |        |       |                                                  |             |     |
| Acetone 04-MAY-07 20:00 0.27 39. µg/m³ 1 1.2  Methylene Chloride 04-MAY-07 20:00 0.168 ND ppb v/v 1 0.5  Methylene Chloride 04-MAY-07 20:00 0.58 ND µg/m³ 1 1.7  trans-1,2-Dichloroethene 04-MAY-07 20:00 0.118 ND ppb v/v 1 0.5  trans-1,2-Dichloroethene 04-MAY-07 20:00 0.47 ND µg/m³ 1 2.0  1,1-Dichloroethane 04-MAY-07 20:00 0.116 ND ppb v/v 1 0.5  1,1-Dichloroethane 04-MAY-07 20:00 0.47 ND µg/m³ 1 2.0  Methyl t-Butyl Ether 04-MAY-07 20:00 0.147 ND µg/m³ 1 2.0  Methyl t-Butyl Ether 04-MAY-07 20:00 0.147 ND µg/m³ 1 2.0  Methyl t-Butyl Ether 04-MAY-07 20:00 0.147 ND µg/m³ 1 2.0  Methyl t-Butyl Ether 04-MAY-07 20:00 0.53 ND µg/m³ 1 1.8  Vinyl Acetate 04-MAY-07 20:00 0.133 ND ppb v/v 1 0.5  Vinyl Acetate 04-MAY-07 20:00 0.47 ND µg/m³ 1 1.8  Vinyl Acetate 04-MAY-07 20:00 0.47 ND µg/m³ 1 1.8  1,1-Dichloroethene 04-MAY-07 20:00 0.47 ND µg/m³ 1 1.8  1,1-Dichloroethene 04-MAY-07 20:00 0.43 ND µg/m³ 1 1.8  2-Butanone 04-MAY-07 20:00 0.182 ND ppb v/v 1 0.5  Ethyl Acetate 04-MAY-07 20:00 0.54 ND µg/m³ 1 2.0  Ethyl Acetate 04-MAY-07 20:00 0.55 ND ppb v/v 1 0.5  Ethyl Acetate 04-MAY-07 20:00 0.55 ND ppb v/v 1 0.5  Ethyl Acetate 04-MAY-07 20:00 0.55 ND ppb v/v 1 0.5  Ethyl Acetate 04-MAY-07 20:00 0.55 ND ppb v/v 1 0.5  Ethyl Acetate 04-MAY-07 20:00 0.55 ND ppb v/v 1 0.5  Ethyl Acetate 04-MAY-07 20:00 0.55 ND ppb v/v 1 0.5  Ethyl Acetate 04-MAY-07 20:00 0.55 ND ppb v/v 1 0.5                                                    | Acetone                  |                  |       |        |       |                                                  |             |     |
| Methylene Chloride         04-MAY-07 20:00         0.168         ND         ppb v/v         1         1.2           Methylene Chloride         04-MAY-07 20:00         0.58         ND         µg/m³         1         0.5           trans-1,2-Dichloroethene         04-MAY-07 20:00         0.118         ND         ppb v/v         1         0.5           trans-1,2-Dichloroethene         04-MAY-07 20:00         0.47         ND         µg/m³         1         2.0           1,1-Dichloroethane         04-MAY-07 20:00         0.116         ND         ppb v/v         1         0.5           1,1-Dichloroethane         04-MAY-07 20:00         0.47         ND         µg/m³         1         2.0           Methyl t-Butyl Ether         04-MAY-07 20:00         0.147         ND         ppb v/v         1         0.5           Methyl t-Butyl Ether         04-MAY-07 20:00         0.53         ND         µg/m³         1         1.8           Vinyl Acetate         04-MAY-07 20:00         0.133         ND         ppb v/v         1         0.5           Vinyl Acetate         04-MAY-07 20:00         0.109         ND         µg/m³         1         1.8           1,1-Dichloroethene         04-MAY-07 20:00         0.                                                                                                                                                                                                                                | Acetone                  |                  |       |        |       |                                                  |             |     |
| Methylene Chloride         04-MAY-07 20:00         0.58         ND         µg/m³         1         0.5           trans-1,2-Dichloroethene         04-MAY-07 20:00         0.118         ND         ppb v/v         1         0.5           trans-1,2-Dichloroethene         04-MAY-07 20:00         0.47         ND         µg/m³         1         2.0           1,1-Dichloroethane         04-MAY-07 20:00         0.116         ND         ppb v/v         1         0.5           1,1-Dichloroethane         04-MAY-07 20:00         0.47         ND         µg/m³         1         2.0           Methyl t-Butyl Ether         04-MAY-07 20:00         0.147         ND         ppb v/v         1         0.5           Methyl t-Butyl Ether         04-MAY-07 20:00         0.53         ND         µg/m³         1         1.8           Vinyl Acetate         04-MAY-07 20:00         0.133         ND         ppb v/v         1         0.5           Vinyl Acetate         04-MAY-07 20:00         0.133         ND         µg/m³         1         1.8           1,1-Dichloroethene         04-MAY-07 20:00         0.109         ND         ppb v/v         1         0.5           1,1-Dichloroethene         04-MAY-07 20:00         0.                                                                                                                                                                                                                                | Methylene Chloride       |                  |       |        |       |                                                  |             |     |
| trans-1,2-Dichloroethene         04-MAY-07 20:00         0.118         ND         ppb v/v         1         1.7           trans-1,2-Dichloroethene         04-MAY-07 20:00         0.47         ND         µg/m³         1         0.5           1,1-Dichloroethane         04-MAY-07 20:00         0.116         ND         ppb v/v         1         0.5           1,1-Dichloroethane         04-MAY-07 20:00         0.47         ND         µg/m³         1         2.0           Methyl t-Butyl Ether         04-MAY-07 20:00         0.147         ND         ppb v/v         1         0.5           Methyl t-Butyl Ether         04-MAY-07 20:00         0.53         ND         µg/m³         1         1.8           Vinyl Acetate         04-MAY-07 20:00         0.133         ND         ppb v/v         1         0.5           Vinyl Acetate         04-MAY-07 20:00         0.133         ND         µg/m³         1         1.8           1,1-Dichloroethene         04-MAY-07 20:00         0.109         ND         µg/m³         1         1.8           1,1-Dichloroethene         04-MAY-07 20:00         0.182         ND         µg/m³         1         2.0           2-Butanone         04-MAY-07 20:00         0.54                                                                                                                                                                                                                                       |                          |                  |       |        |       |                                                  |             |     |
| trans-1,2-Dichloroethene         04-MAY-07 20:00         0.47         ND         µg/m³         1         0.5           1,1-Dichloroethane         04-MAY-07 20:00         0.116         ND         ppb v/v         1         0.5           1,1-Dichloroethane         04-MAY-07 20:00         0.47         ND         µg/m³         1         2.0           Methyl t-Butyl Ether         04-MAY-07 20:00         0.147         ND         ppb v/v         1         0.5           Methyl t-Butyl Ether         04-MAY-07 20:00         0.53         ND         µg/m³         1         1.8           Vinyl Acetate         04-MAY-07 20:00         0.133         ND         ppb v/v         1         0.5           Vinyl Acetate         04-MAY-07 20:00         0.47         ND         µg/m³         1         1.8           1,1-Dichloroethene         04-MAY-07 20:00         0.109         ND         ppb v/v         1         0.5           1,1-Dichloroethene         04-MAY-07 20:00         0.182         ND         µg/m³         1         2.0           2-Butanone         04-MAY-07 20:00         0.182         ND         ppb v/v         1         0.5           2-Butanone         04-MAY-07 20:00         0.54         ND                                                                                                                                                                                                                                         |                          |                  |       |        |       |                                                  |             |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trans-1,2-Dichloroethene |                  |       |        |       |                                                  |             |     |
| 1,1-Dichloroethane       04-MAY-07 20:00 0.47 ND µg/m³       1 0.5         Methyl t-Butyl Ether       04-MAY-07 20:00 0.147 ND ppb v/v       1 0.5         Methyl t-Butyl Ether       04-MAY-07 20:00 0.53 ND µg/m³       1 1.8         Vinyl Acetate       04-MAY-07 20:00 0.133 ND ppb v/v       1 0.5         Vinyl Acetate       04-MAY-07 20:00 0.133 ND µg/m³       1 1.8         Vinyl Acetate       04-MAY-07 20:00 0.47 ND µg/m³       1 1.8         1,1-Dichloroethene       04-MAY-07 20:00 0.109 ND ppb v/v       1 0.5         1,1-Dichloroethene       04-MAY-07 20:00 0.43 ND µg/m³       1 2.0         2-Butanone       04-MAY-07 20:00 0.182 ND ppb v/v       1 0.5         2-Butanone       04-MAY-07 20:00 0.54 ND µg/m³       1 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                  |       |        |       |                                                  |             |     |
| Methyl t-Butyl Ether         04-MAY-07 20:00 0.147 ND ppb v/v         1 0.5           Methyl t-Butyl Ether         04-MAY-07 20:00 0.53 ND µg/m³ 1 1.8           Vinyl Acetate         04-MAY-07 20:00 0.133 ND ppb v/v         1 0.5           Vinyl Acetate         04-MAY-07 20:00 0.47 ND µg/m³ 1 1.8           Vinyl Acetate         04-MAY-07 20:00 0.47 ND µg/m³ 1 1.8           1,1-Dichloroethene         04-MAY-07 20:00 0.109 ND ppb v/v         1 0.5           1,1-Dichloroethene         04-MAY-07 20:00 0.43 ND µg/m³ 1 2.0           2-Butanone         04-MAY-07 20:00 0.182 ND ppb v/v         1 0.5           2-Butanone         04-MAY-07 20:00 0.54 ND µg/m³ 1 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                  |       |        |       |                                                  |             |     |
| Methyl t-Butyl Ether         04-MAY-07 20:00 0.53 ND µg/m³ 1         ND µg/m³ 1         1.8           Vinyl Acetate         04-MAY-07 20:00 0.133 ND ppb v/v         1 0.5           Vinyl Acetate         04-MAY-07 20:00 0.47 ND µg/m³ 1         1.8           1,1-Dichloroethene         04-MAY-07 20:00 0.109 ND ppb v/v         1 0.5           1,1-Dichloroethene         04-MAY-07 20:00 0.43 ND µg/m³ 1         1 0.5           2-Butanone         04-MAY-07 20:00 0.182 ND ppb v/v         1 0.5           2-Butanone         04-MAY-07 20:00 0.54 ND µg/m³ 1         1 0.5           2-Butanone         04-MAY-07 20:00 0.54 ND µg/m³ 1         1 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                  |       |        |       |                                                  |             |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl t-Butyl Ether     |                  |       |        |       |                                                  |             |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |       |        |       |                                                  |             |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |       |        |       |                                                  |             |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1-Dichloroethene       |                  |       |        |       |                                                  |             |     |
| 2-Butanone 04-MAY-07 20:00 0.182 ND ppb v/v 1 0.5 2-Butanone 04-MAY-07 20:00 0.54 ND µg/m³ 1 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1-Dichloroethene       |                  |       |        |       |                                                  |             |     |
| 2-Butanone 04-MAY-07 20:00 0.54 ND µg/m³ 1 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                  |       |        |       |                                                  |             |     |
| Fthyl Agotata 1 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                  |       |        |       |                                                  |             |     |
| Ethyl Acetate   04-MAY-07 20:00   0.273   ND   ppb v/v   1   0.5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ethyl Acetate            | 04-MAY-07 20:00  | 0.273 | ND     |       |                                                  |             |     |



Form RLIMS63A-V1.4 05100710491954

Page 19



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 10-MAY-07 10:49 Client Name..... Weston Solutions, Inc.

DCL Sample Name...: 07E02390 DCL Report Group. .: 07E-0361-01

#### Analytical Results

| Analyta                             | Date                                                  |        |        |                   |       |               |     |
|-------------------------------------|-------------------------------------------------------|--------|--------|-------------------|-------|---------------|-----|
| Analyte                             | Analyzed                                              | MDL    | Result | Units             | Qual. | Dilution      | PQL |
| Ethyl Acetate                       | 04-MAY-07 20:00                                       | 0.98   | ND     | µg/m³             |       | 1             | 1.8 |
| Hexane                              | 04-MAY-07 20:00                                       | 0.121  | 2.2    | ppb v/v           |       | 1             | 0.5 |
| Hexane<br>Chloroform                | 04-MAY-07 20:00                                       | 0.43   | 7.7    | μg/m³             |       | 11            | 1.8 |
|                                     | 04-MAY-07 20:00                                       | 0.115  | 0.94   | ppb v/v           |       | 1             | 0.5 |
| Chloroform                          | 04-MAY-07 20:00                                       | 0.56   | 4.6    | μg/m³             |       | 1             | 2.4 |
| 1,1,1-Trichloroethane               | 04-MAY-07 20:00                                       | 0.0725 | ND     | ppb v/v           |       | 1             | 0.5 |
| 1,1,1-Trichloroethane               | 04-MAY-07 20:00                                       | 0.40   | ND     | μg/m³             |       | 1             | 2.7 |
| Carbon Tetrachloride                | 04-MAY-07 20:00                                       | 0.0657 | ND     | ppb v/v           |       | 1             | 0.5 |
| Carbon Tetrachloride                | 04-MAY-07 20:00                                       | 0.41   | ND     | µg/m³             |       | 1             | 3.1 |
| Benzene                             | 04-MAY-07 20:00                                       | 0.102  | 0.61   | ppb v/v           |       | 1             | 0.5 |
| Benzene                             | 04-MAY-07 20:00                                       | 0.33   | 1.9    | μg/m³             |       | 1             | 1.6 |
| Tetrahydrofuran                     | 04-MAY-07 20:00                                       | 0.227  | ND     | v/v dqq           |       | 1             | 0.5 |
| Tetrahydrofuran                     | 04-MAY-07 20:00                                       | 0.67   | ND     | µg/m³             |       | 1             | 1.5 |
| 1,2-Dichloroethane                  | 04-MAY-07 20:00                                       | 0.153  | ND     | ppb v/v           | .~    | 1             | 0.5 |
| 1,2-Dichloroethane                  | 04-MAY-07 20:00                                       | 0.62   | ND     | µg/m³             |       | 1             | 2.0 |
| Cyclohexane                         | 04-MAY-07 20:00                                       | 0.120  | 0.80   | ppb v/v           |       | 1             | 0.5 |
| Cyclohexane                         | 04-MAY-07 20:00                                       | 0.41   | 2.8    | µg/m³             |       | 1             | 1.7 |
| Trichloroethene                     | 04-MAY-07 20:00                                       | 0.120  | 0.53   | ppb v/v           |       | 1             | 0.5 |
| Trichloroethene                     | 04-MAY-07 20:00                                       | 0.64   | 2.8    | μg/m³             |       | 1             | 2.7 |
| 1,2-Dichloropropane                 | 04-MAY-07 20:00                                       | 0.123  | ND     | ppb v/v           |       | 1             | 0.5 |
| 1,2-Dichloropropane                 | 04-MAY-07 20:00                                       | 0.57   | ND     | ug/m³             |       | 1             | 2.3 |
| Bromodichloromethane                | 04-MAY-07 20:00                                       | 0.0779 | ND     | v/v dqq           |       | 1             | 0.5 |
| Bromodichloromethane                | 04-MAY-07 20:00                                       | 0.52   | ND     | ug/m³             |       | 1             | 3.3 |
| Heptane                             | 04-MAY-07 20:00                                       | 0.101  | 1.7    | v\v dag           |       | 1 1           | 0.5 |
| Heptane                             | 04-MAY-07 20:00                                       | 0.41   | 6.9    | nd/w <sub>3</sub> |       | 1             | 2.0 |
| cis-1,3-Dichloropropene             | 04-MAY-07 20:00                                       | 0.106  | ND     | v\v dqq           |       | 1 1           | 0.5 |
| cis-1,3-Dichloropropene             | 04-MAY-07 20:00                                       | 0.48   | ND     | nd/w3             |       | 1             | 2.3 |
| 4-Methyl-2-Pentanone                | 04-MAY-07 20:00                                       | 0.116  | ND     | ppb v/v           |       | 1             | 0.5 |
| 4-Methyl-2-Pentanone                | 04-MAY-07 20:00                                       | 0.48   | ND     | hd/w <sub>3</sub> |       | 1             | 2.0 |
| Toluene                             | 04-MAY-07 20:00                                       | 0.115  | 2.6    | ppb v/v           |       | $\frac{1}{1}$ | 0.5 |
| Toluene                             | 04-MAY-07 20:00                                       | 0.43   | 9.8    | nd/m3             |       | 1 .           | 1.9 |
| trans-1,3-Dichloropropene           | 04-MAY-07 20:00                                       | 0.130  | ND     | v/v dgg           |       | 1             | 0.5 |
| trans-1,3-Dichloropropene           | 04-MAY-07 20:00                                       | 0.59   | ND     | hd/m3             |       | 1             | 2.3 |
| 1,1,2-Trichloroethane               | 04-MAY-07 20:00                                       | 0.0972 | ND     | ppb v/v           |       | 1             | 0.5 |
| 1,1,2-Trichloroethane               | 04-MAY-07 20:00                                       | 0.53   | ND     | nd/m3             |       | $\frac{1}{1}$ |     |
| Tetrachloroethene                   | 04-MAY-07 20:00                                       | 0.0847 | 0.85   | v/v dqq           |       | 1             | 2.7 |
| Tetrachloroethene                   | 04-MAY-07 20:00                                       | 0.57   | 5.8    | nd/w <sub>3</sub> |       | 1             | 0.5 |
| 2-Hexanone                          | 04-MAY-07 20:00                                       | 0.136  | ND ND  | pg/m³             |       | $\frac{1}{1}$ | 3.4 |
| 2-Hexanone                          | 04-MAY-07 20:00                                       | 0.56   | ND     | hd/w <sub>3</sub> |       | 1             | 0.5 |
| Dibromochloromethane                | 04-MAY-07 20:00                                       | 0.0792 | ND     | y/v dag           |       |               | 2.0 |
| Dibromochloromethane                | 04-MAY-07 20:00                                       | 0.67   | ND     | hd/w <sub>3</sub> |       | 1             | 0.5 |
| 1,2-Dibromoethane                   | 04-MAY-07 20:00                                       | 0.119  | ND     | ppb v/v           |       | 1             | 4.2 |
| 1,2-Dibromoethane                   | 04-MAY-07 20:00                                       | 0.91   | ND     |                   |       | 1             | 0.5 |
| Chlorobenzene                       | 04-MAY-07 20:00                                       | 0.0882 | ND ND  | µg/m³             |       | 1             | 3.8 |
| Chlorobenzene                       | 04-MAY-07 20:00                                       | 0.41   |        | ppb v/v           |       | 1             | 0.5 |
| Ethylbenzene                        | 04-MAY-07 20:00                                       | 0.150  | ND     | µg/m³             |       | 1             | 2.3 |
| Ethylbenzene                        | 04-MAY-07 20:00                                       |        | 0.99   | v/v dqq           |       | 1             | 0.5 |
| m,p-Xylene                          | 04-MAY-07 20:00                                       | 0.65   | 4.3    | hd/w3             |       | 1             | 2.2 |
| m,p-Xylene                          | 04-MAY-07 20:00                                       |        | 1.4    | v/v dqq           |       | 1             | 1.0 |
| o-Xylene                            |                                                       | 0.92   | 6.0    | na/w3             |       | 1             | 4.3 |
| o-Xylene                            | 04-MAY-07 20:00                                       | 0.113  | 0.57   | v/v dqq           |       | 1             | 0.5 |
| Styrene                             | 04-MAY-07 20:00                                       | 0.49   | 2.5    | µg/m³             |       | 1             | 2.2 |
|                                     | 04-MAY-07 20:00                                       | 0.0748 | ND     | v/v dag           |       | 1             | 0.5 |
| Bromoform                           | 04-MAY-07 20:00                                       | 0.32   | ND     | µg/m³             |       | 1             | 2.1 |
|                                     | 04-MAY-07 20:00                                       | 0.0884 | ND     | ppb v/v           |       | 1             | 0.5 |
| Bromoform 1,1,2,2-Tetrachloroethane | 04-MAY-07 20:00                                       | 0.90   | ND     | µg/m³             |       | 1             | 5.1 |
|                                     | 04-MAY-07 20:00                                       | 0.108  | ND     | v/v dqq           |       | 1             | 0.5 |
|                                     | 04-MAI-07 20:00                                       |        | 1      | 77 4              |       |               |     |
| 1,1,2,2-Tetrachloroethane           | 04-MAY-07 20:00<br>04-MAY-07 20:00<br>04-MAY-07 20:00 | 0.74   | ND     | µg/m³             |       | 1             | 3.4 |

019



Form RLIMS63A-V1.4 05100710491954

Page 20



### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:49 Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E02390 DCL Report Group..: 07E-0361-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Qual. | Dilution | PQL |
|------------------------|------------------|--------|--------|---------|-------|----------|-----|
| Benzyl Chloride        | 04-MAY-07 20:00  | 0.70   | ND.    | µg/m³   | ~     | 1        | 2.6 |
| 4-Ethyl toluene        | 04-MAY-07 20:00  | 0.0983 | ND     | v\v dag |       | 1 1      | 0.5 |
| 4-Ethyl toluene        | 04-MAY-07 20:00  | 0.48   | ND     | nd/w3   |       | 1        | 2.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 20:00  | 0.112  | ND     | ppb v/v |       | 1        | 0.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 20:00  | 0.55   | ND     | µg/m³   |       | 1 1      | 2.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 20:00  | 0.117  | 0.28   | v/v dag | J     | 1 1      | 0.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 20:00  | 0.58   | 1.4    | µg/m³   | J     | 1 1      | 2.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 20:00  | 0.120  | ND     | v/v dag |       | 1 1      | 0.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 20:00  | 0.72   | ND     | ug/m³   |       | 1 1      | 3.0 |
| 1,4-Dichlorobenzene    | 04-MAY-07 20:00  | 0.0987 | ND     | v\v daa |       | 1 1      | 0.5 |
| 1,4-Dichlorobenzene    | 04-MAY-07 20:00  | 0.59   | ND     | µg/m³   |       | 1 1      | 3.0 |
| 1,2-Dichlorobenzene    | 04-MAY-07 20:00  | 0.0851 | ND     | ppb v/v |       | 1 1      | 0.5 |
| 1,2-Dichlorobenzene    | 04-MAY-07 20:00  | 0.51   | ND     | µg/m³   |       | 1 1      | 3.0 |
| 1,2,4-Trichlorobenzene | 04-MAY-07-20:00  | 0.115  | ND     | ppb v/v |       | 1        | 0.5 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 20:00  | 0.85   | ND     | ug/m³   |       | 1 1      | 3.7 |
| Hexachlorobutadiene    | 04-MAY-07.20:00  | 0.119  | ND     | ppb v/v |       | 1        | 0.5 |
| Hexachlorobutadiene    | 04-MAY-07 20:00  | 1.3    | , ND   | µg/m³   |       | 1        | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time) | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|-------------------------|------------------|--------|---------|-------|----------|
| Ethanol(5.51)           | 04-MAY-07 20:00  | 10.    | v\v daa | Ţ     | 1        |



# Form RLIMS63A-V1.4 05100710491954

Page 21



#### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:49

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: Not Provided

Sampling Site..... Behr VOC Plume PRP

Release Number..... 0055729

Date Received.....: 04-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared...... Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-20-SS
DCL Sample Name...: 07E02391
DCL Report Group..: 07E-0361-01

Matrix..... AIR

Date Sampled....: 02-MAY-07 00:00

Reporting Units...:  $ppb \ v/v$ 

Report Basis.....: ☒ As Received ☐ Dried

DCL Analysis Group: G074801D
Analysis Method. . : T0-15
Instrument Type. . : GC/MS V0
Instrument ID. . . : 5972-0
Column Type. . . . : DB-1

| Analyte                  | Date<br>Analyzed | MDL    | Result   | Units             | 0112.1       | Dilutica                                           | DOT   |
|--------------------------|------------------|--------|----------|-------------------|--------------|----------------------------------------------------|-------|
| Propene                  | 04-MAY-07 21:10  | 0.180  | ND U.T   |                   | Qual.        |                                                    | PQL   |
| Propene                  | 04-MAY-07 21:10  | 0.180  | ND UJ    | <del> </del>      | <del> </del> | 1                                                  | 0.5.  |
| Dichlorodifluoromethane  | 04-MAY-07 21:10  | 0.0669 | 0.50     | 1-27,             | J            | 1 1                                                | 0.86  |
| Dichlorodifluoromethane  | 04-MAY-07 21:10  | 0.0003 | 2.5      | ha/w3             | <del></del>  | 1 1                                                | 0.5   |
| Chloromethane            | 04-MAY-07 21:10  | 0.249  | NDIJT    | bbp A\A           | J            | 1 1                                                | 2.5   |
| Chloromethane            | 04-MAY-07 21:10  | 0.51   | ND I     |                   | <del> </del> | $\frac{1}{1}$                                      | 0.5   |
| Freon 114                | 04-MAY-07 21:10  | 0.156  | ND ND    | ppb v/v           | ļ            | <del></del>                                        | 1.0   |
| Freon 114                | 04-MAY-07 21:10  | 1.1    | ND       | nd/w <sub>3</sub> | ļ — —        | $\frac{1}{1}$                                      | 0.5   |
| Vinyl Chloride           | 04-MAY-07 21:10  | 0.301  | NDIA     | μα/μιν<br>Vy daa  |              | 1 1                                                | 3,5   |
| Vinyl Chloride           | 04-MAY-07 21:10  | 0.301  | ND UJ    |                   | ļ            |                                                    | 0.5   |
| 1,3-Butadiene            | 04-MAY-07 21:10  | 0.346  | ND IJ    | µg/m³             |              | $\frac{1}{1}$                                      | 1.3   |
| 1,3-Butadiene            | 04-MAY-07 21:10  | 0.340  | ND W     | ppb v/v<br>ug/m³  |              | $\begin{array}{c c} & 1 \\ \hline & 1 \end{array}$ | 0.5   |
| Bromomethane             | 04-MAY-07 21:10  | 0.215  | NDIX     | ppb v/v           |              | <del>                                     </del>   | 1.1   |
| Bromomethane             | 04-MAY-07 21:10  | 0.83   | ND UJ    | na\w <sub>3</sub> |              | <del></del>                                        | 0.5   |
| Chloroethane             | 04-MAY-07 21:10  | 0.388  | ND ID    | v/v dag           |              | 1 1                                                | 1.9   |
| Chloroethane             | 04-MAY-07 21:10  | 1.0    | ND 12    | ha/w <sub>3</sub> |              |                                                    | 0.5   |
| Freon 11                 | 04-MAY-07 21:10  | 0.0921 | 0.19     | v\v daa           | ·            | 1                                                  | 1.3 - |
| Freon 11                 | 04-MAY-07 21:10  | 0.0921 | 1.1      | ha/w <sub>3</sub> | J            | 1 1                                                | 0.5   |
| cis-1,2-Dichloroethene   | 04-MAY-07 21:10  | 0.102  | ND       |                   | J            | 1 1                                                | 2.8   |
| cis-1,2-Dichloroethene   | 04-MAY-07 21:10  | 0.40   | ND       | ppb v/v           |              | 1 1                                                | 0.5   |
| Carbon Disulfide         | 04-MAY-07 21:10  | 0.40   | 0.32     | μg/m³.<br>ppb v/v | <del>-</del> | 1                                                  | 2.0   |
| Carbon Disulfide         | 04-MAY-07 21:10  | 0.35   | 1.0      | ha\w <sub>3</sub> | J            | 1 1                                                | 0.5   |
| Freon 113                | 04-MAY-07 21:10  | 0.0950 | ND       | hg/m,             | J            | 1                                                  | 1.6   |
| Freon 113                | 04-MAY-07 21:10  | 0.0330 | ND       | nd/w <sub>3</sub> |              | 1                                                  | 0.5   |
| Acetone                  | 04-MAY-07 21:10  | 0.113  | 6.9      | ppb v/v           |              | 1 1                                                | 3.8   |
| Acetone                  | 04-MAY-07 21:10  | 0.27   | 16.      | nd/w <sub>3</sub> |              | 1                                                  | 0.5   |
| Methylene Chloride       | 04-MAY-07 21:10  | 0.168  | 0.24     | ppb v/v           | <del></del>  | 1 1                                                | 1.2   |
| Methylene Chloride       | 04-MAY-07 21:10  | 0.58   | 0.24     |                   | J            | 1                                                  | 0.5   |
| trans-1,2-Dichloroethene | 04-MAY-07 21:10  | 0.118  | ND       | μg/m³<br>ν/ν daa  | J            | 1 .                                                | 1.7   |
| trans-1,2-Dichloroethene | 04-MAY-07 21:10  | 0.47   | ND       |                   | ***********  | 1 1                                                | 0.5   |
| 1,1-Dichloroethane       | 04-MAY-07 21:10  | 0.116  | ND       | µg/m³             |              | 1 1                                                | 2.0   |
| 1,1-Dichloroethane       | 04-MAY-07 21:10  | 0.47   | ND ND    | ha/w³             | <del></del>  | 1                                                  | 0.5   |
| Methyl t-Butyl Ether     | 04-MAY-07 21:10  | 0.147  | ND ND    |                   |              | 1                                                  | 2.0   |
| Methyl t-Butyl Ether     | 04-MAY-07 21:10  | 0.53   | ND       | ppb v/v           | <del></del>  | 1                                                  | 0.5   |
| Vinyl Acetate            | 04-MAY-07 21:10  | 0.133  | ND       | µg/m³             |              | 1 1                                                | 1.8   |
| Vinyl Acetate            | 04-MAY-07 21:10  | 0.133  | ND ND    | ppb v/v           |              | 1                                                  | 0.5   |
| 1,1-Dichloroethene       | 04-MAY-07 21:10  | 0.109  | ND ND    | µg/m³             |              | 1                                                  | 1.8   |
| 1,1-Dichloroethene       | 04-MAY-07 21:10  | 0.109  |          | ppb v/v           |              | 1                                                  | 0.5   |
| 2-Butanone               | 04-MAY-07 21:10  | 0.43   | ND       | µg/m³             |              | 1                                                  | 2.0   |
| 2-Butanone               | 04-MAY-07 21:10  | 0.182  | ND<br>ND | ppb v/v           |              | 1                                                  | 0.5   |
| Ethyl Acetate            | 04-MAY-07 21:10  | 0.34   |          | μg/m³             |              | 1                                                  | 1.5   |
|                          | 104-MAI-0/ 21:10 | 0.213  | ND       | ppb v/v           |              | 1                                                  | 0.5   |



Form RLIMS63A-V1.4 05100710491954

Page 22



# SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:49 Client Name..... Weston Solutions, Inc.

DCL Sample Name...: 07E02391 DCL Report Group..: 07E-0361-01

| Ethyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date            |             |        | T .               | T                | Т                |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|--------|-------------------|------------------|------------------|-----|
| Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | <del></del> | Result | Units             | Qual.            | Dilution         | PQL |
| Hexage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  | 1                | 1.8 |
| Chicorform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  | . 1              | 0.5 |
| Chicoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  | 1                | 1.8 |
| 1.1.1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  | 1                | 0.5 |
| 1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  | 1 1              | 2.4 |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 1 Thickleroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |             |        |                   |                  | 1                | 0.5 |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Carbon Maturalla de la contra del contra del contra de la contr |                 |             |        |                   | <u> </u>         |                  | 2.7 |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Carbon Metrochloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             |        |                   |                  | 1                | 0.5 |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  |                  | 3.1 |
| Tetrahydrofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  |                  | 0.5 |
| Tetrahydrofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   | J                |                  | 1.6 |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  | 0.5 |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  | 1.5 |
| Cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 2-Dightoroothans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |             |        |                   |                  |                  | 0.5 |
| Cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  | 2.0 |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  | 0.5 |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  | 1.7 |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  | 0.5 |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY 07 21 10 |             |        |                   |                  |                  | 2.7 |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2-Dichloropropage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |             |        |                   |                  |                  | 0.5 |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromodichloromethano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             |        |                   |                  |                  | 2.3 |
| Heptane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             |        |                   |                  |                  | 0.5 |
| Heptane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  | 3.3 |
| Cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  | 0.5 |
| Cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  | 2.0 |
| A-methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cis-1.3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |             |        |                   |                  |                  | 0.5 |
| A-methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             |        |                   |                  |                  | 2.3 |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             |        |                   |                  |                  | 0.5 |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  | 2.0 |
| trans-1,3-Dichloropropene         04-MAY-07 21:10 0.130 ND ppb v/v         1 0.130 ND ppb v/v <td>Toluene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                               | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |             |        |                   |                  |                  | 0.5 |
| trans-1, 3-bichloropropene         04-MAY-07         21:10         0.59         ND         µg/m³         1         2.           1,1,2-Trichloroethane         04-MAY-07         21:10         0.0972         ND         ppb v/v         1         0.           Tetrachloroethane         04-MAY-07         21:10         0.53         ND         µg/m³         1         2.           Tetrachloroethene         04-MAY-07         21:10         0.0847         0.88         ppb v/v         1         0.           2-Hexanone         04-MAY-07         21:10         0.57         6.0         µg/m³         1         3.           2-Hexanone         04-MAY-07         21:10         0.56         ND         µg/m³         1         3.           2-Hexanone         04-MAY-07         21:10         0.56         ND         µg/m³         1         2.           2-Hexanone         04-MAY-07         21:10         0.56         ND         µg/m³         1         2.           2-Hexanone         04-MAY-07         21:10         0.56         ND         µg/m³         1         2.           Dibromochloromethane         04-MAY-07         21:10         0.67         ND         µg/m³         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04-MAY-07 21:10 |             |        |                   |                  |                  | 1.9 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |             |        |                   |                  |                  | 0.5 |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |             |        |                   |                  |                  | 2.3 |
| Tetrachloroethene $04-MAY-07$ $21:10$ $0.0847$ $0.88$ $ppb$ $v/v$ $1$ $0.084$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ $1.09$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  |     |
| Tetrachloroethene 04-MAY-07 21:10 0.57 6.0 µg/m³ 1 3. 2-Hexanone 04-MAY-07 21:10 0.136 ND ppb v/v 1 0. 2-Hexanone 04-MAY-07 21:10 0.56 ND µg/m³ 1 0. 2-Hexanone 04-MAY-07 21:10 0.56 ND µg/m³ 1 0. 2-Hexanone 04-MAY-07 21:10 0.0792 ND ppb v/v 1 0. Dibromochloromethane 04-MAY-07 21:10 0.0792 ND ppb v/v 1 0. Dibromochloromethane 04-MAY-07 21:10 0.67 ND µg/m³ 1 0. 1,2-Dibromoethane 04-MAY-07 21:10 0.119 ND ppb v/v 1 0. 1,2-Dibromoethane 04-MAY-07 21:10 0.91 ND µg/m³ 1 0. Chlorobenzene 04-MAY-07 21:10 0.91 ND µg/m³ 1 0. Chlorobenzene 04-MAY-07 21:10 0.0882 ND ppb v/v 1 0. Chlorobenzene 04-MAY-07 21:10 0.41 ND µg/m³ 1 0. Ethylbenzene 04-MAY-07 21:10 0.150 0.62 ppb v/v 1 0. Ethylbenzene 04-MAY-07 21:10 0.55 2.7 µg/m³ 1 2. Ethylbenzene 04-MAY-07 21:10 0.213 0.93 ppb v/v J 1 0. En m,p-Xylene 04-MAY-07 21:10 0.213 0.93 ppb v/v J 1 1. En m,p-Xylene 04-MAY-07 21:10 0.113 0.36 ppb v/v J 1 0. Extylene 04-MAY-07 21:10 0.113 0.36 ppb v/v J 1 0. Extyrene 04-MAY-07 21:10 0.0748 ND ppb v/v J 1 0. Extyrene 04-MAY-07 21:10 0.32 ND µg/m³ J 1 2. Extyrene 04-MAY-07 21:10 0.0884 ND ppb v/v J 1 0. Extreme 04-MAY-07 21:10 0.0884 ND ppb v/v J 1 0. Extreme 04-MAY-07 21:10 0.0884 ND ppb v/v J 1 0. Extreme 04-MAY-07 21:10 0.0884 ND ppb v/v J 1 0. Extreme 04-MAY-07 21:10 0.0884 ND ppb v/v J 1 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04-MAY-07 21:10 |             |        |                   |                  |                  |     |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  |                  |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |             |        |                   |                  |                  |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  |                  |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             |        |                   |                  |                  |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04-MAY-07 21:10 |             |        |                   |                  |                  |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |             |        |                   |                  |                  |     |
| Chlorobenzene         04-MAY-07 21:10 0.0882 ND ppb v/v         ND ppb v/v         1 0.           Chlorobenzene         04-MAY-07 21:10 0.41 ND ug/m³ 1 2.         1 0.           Ethylbenzene         04-MAY-07 21:10 0.150 0.62 ppb v/v         1 0.           Ethylbenzene         04-MAY-07 21:10 0.65 2.7 ug/m³ 1 2.           m,p-Xylene         04-MAY-07 21:10 0.213 0.93 ppb v/v         J 1 1.           m,p-Xylene         04-MAY-07 21:10 0.92 4.0 ug/m³ J 1 4.           o-Xylene         04-MAY-07 21:10 0.113 0.36 ppb v/v         J 1 0.           o-Xylene         04-MAY-07 21:10 0.49 1.6 ug/m³ J 1 2.           Styrene         04-MAY-07 21:10 0.0748 ND ppb v/v         J 1 0.           Styrene         04-MAY-07 21:10 0.32 ND ug/m³ J 1 2.           Bromoform         04-MAY-07 21:10 0.0884 ND ppb v/v         J 0.           Bromoform         04-MAY-07 21:10 0.0884 ND ppb v/v         J 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04-MAY-07 21:10 |             |        |                   |                  |                  |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             |        |                   |                  |                  |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  |                  |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |        |                   |                  | <del></del>      |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             | 2.7    |                   |                  | <del>- 1</del> + |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   | <del>, ,  </del> |                  | 1.0 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  |                  | 4.3 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  |                  | 0.5 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  |                  | 2.2 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  |                  | 0.5 |
| Bromoform 04-MAY-07 21:10 0.0884 ND ppb v/v 1 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  |                  |     |
| Promoform.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 |             |        |                   |                  |                  |     |
| 104 MAI-07 21:101 0.90   ND   NG/m3   1 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04-MAY-07 21:10 | 0.90        | ND     | hd/w <sub>3</sub> |                  |                  | 5.1 |
| 1,1,2,2-Tetrachloroethane 04-MAY-07 21:10 0.108 ND ppb v/v 1 0.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04-MAY-07 21:10 |             |        |                   |                  |                  | 0.5 |
| $1,1,2,2$ -Tetrachloroethane $04$ -MAY-07 $21:10$ $0.74$ ND $ug/m^3$ $1$ $3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 0.74        |        |                   |                  |                  | 3.4 |
| Benzyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | senzyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-MAY-07 21:10 | 0.136       |        |                   |                  |                  | 0.5 |



Form RLIMS63A-V1.4 05100710491954

Page 23



# SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:49
Client Name....: Weston Solutions, Inc.

DCL Sample Name...: 07E02391
DCL Report Group..: 07E-0361-01

# Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units             | Oual. | Dilution                                         | PQL        |
|------------------------|------------------|--------|--------|-------------------|-------|--------------------------------------------------|------------|
| Benzyl Chloride        | 04-MAY-07 21:10  | 0.70   | ND     | µg/m³             | ~     | 1                                                | 2.6        |
| 4-Ethyl toluene        | 04-MAY-07 21:10  | 0.0983 | ND     | ppb v/v           |       | 1 1                                              | 0.5        |
| 4-Ethyl toluene        | 04-MAY-07 21:10  | 0.48   | ND     | ug/m³             |       | 1 1                                              | 2.5        |
| 1,3,5-Trimethylbenzene | 04-MAY-07 21:10  | 0.112  | 0.12   | v\v dqq           | J     | 1 1                                              | 0.5        |
| 1,3,5-Trimethylbenzene | 04-MAY-07 21:10  | 0.55   | 0.59   | µg/m³             | J     | 1 1                                              | 2.5        |
| 1,2,4-Trimethylbenzene | 04-MAY-07 21:10  | 0.117  | 0.48   | ppb v/v           | J     | 1 1                                              | 0.5        |
| 1,2,4-Trimethylbenzene | 04-MAY-07 21:10  | 0.58   | 2.3    | na/w3             | J     | <del>                                     </del> | 2.5        |
| 1,3-Dichlorobenzene    | 04-MAY-07 21:10  | 0.120  | ND     | v\v dag           |       | <del>                                     </del> | 0.5        |
| 1,3-Dichlorobenzene    | 04-MAY-07 21:10  | 0.72   | ND     | nd/w3             | -     | 1                                                | 3.0        |
| 1,4-Dichlorobenzene    | 04-MAY-07 21:10  | 0.0987 | 0.16   | v\v dag           | J     | <del>                                     </del> | 0.5        |
| 1,4-Dichlorobenzene    | 04-MAY-07 21:10  | 0.59   | 0.97   | hd/w <sub>3</sub> | J     | 1 -1                                             | 3.0        |
| 1,2-Dichlorobenzene    | 04-MAY-07 21:10  | 0.0851 | ND     | v/v dag           |       | <del></del>                                      |            |
| 1,2-Dichlorobenzene    | 04-MAY-07 21:10  | 0.51   | ND     | nd/w3             |       | + +                                              | 0.5        |
| 1,2,4-Trichlorobenzene | 04-MAY-07 21:10  | 0.115  | ND     | ppb v/v           |       | 1                                                | 3.0        |
| 1,2,4-Trichlorobenzene | 04-MAY-07 21:10  | 0.85   | ND     | hd/w <sub>3</sub> |       | 1.                                               | 0.5        |
| Hexachlorobutadiene    | 04-MAY-07 21:10  | 0.119  | ND     | v\v dag           |       | 1                                                | 3.7        |
| Hexachlorobutadiene    | 04-MAY-07 21:10  | 1.3    | ND     | hd/w <sub>3</sub> |       | 1                                                | 0.5<br>5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
| Unknown fluorocarbon(4.54)  | 04-MAY-07 21:10  | 2.2    | v\v dag | J     | 1        |
| Isobutane(4.65)             | 04-MAY-07 21:10  | 3.7    | v/v dag | J     | 1        |
| Butane (4.93)               | 04-MAY-07 21:10  | 2.4    | ppb v/v | ī     | 1 1      |
| Ethanol(5.48)               | 04-MAY-07 21:10  | 4.8    | v\v dag | Ţ     | 1 1      |
| Unknown fluorocarbon(13.78) | 04-MAY-07 21:10  | 25.    | ppb v/v | J     | 1        |



### SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.4 05100710491954 Page 24

Date Printed....: 10-MAY-07 10:49

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: Not Provided

Sampling Site..... Behr VOC Plume PRP

Release Number....: 0055729

Date Received.....: 04-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-21-SS DCL Sample Name...: 07E02392 DCL Report Group..: 07E-0361-01

Matrix..... AIR

Date Sampled....: 02-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....: ☒ As Received ☐ Dried

DCL Analysis Group: G074801D Analysis Method...: T0-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type..... DB-1

X Primary ☐ Confirmation

| Analyte                                    | Date<br>Analyzed | MDL    | Result      | Units             | Oual.                                            | Dilution      | POL   |
|--------------------------------------------|------------------|--------|-------------|-------------------|--------------------------------------------------|---------------|-------|
| Propene                                    | 04-MAY-07 22:21  | 0.180  | NDUJ        |                   | guar.                                            | 1             | 0.5   |
| Propene                                    | 04-MAY-07 22:21  | 0.31   | ND UJ       |                   | <del> </del>                                     | 1             |       |
| Dichlorodifluoromethane                    | 04-MAY-07 22:21  | 0.0669 | 0.49        | ppb v/v           | J                                                | $\frac{1}{1}$ | 0.86  |
| Dichlorodifluoromethane                    | 04-MAY-07 22:21  | 0.33   | 2.4         | na/w <sub>3</sub> | J                                                |               | 0.5   |
| Chloromethane                              | 04-MAY-07 22:21  | 0.249  | ND 17       | v/v dag           | <del>                                     </del> | 1             | 2.5   |
| Chloromethane                              | 04-MAY-07 22:21  | 0.51   | ND UJ       |                   | <del> </del>                                     | $\frac{1}{1}$ | 0.5   |
| Freon 114                                  | 04-MAY-07 22:21  | 0.156  | ND          | ppb v/v           | ·                                                | $\frac{1}{1}$ | 1.0   |
| Freon 114                                  | 04-MAY-07 22:21  | 1.1    | ND          | na/w <sub>3</sub> | <del></del>                                      |               | 0.5   |
| Vinyl Chloride                             | 04-MAY-07 22:21  | 0.301  | NDVJ        | ppb v/v           | <del> </del>                                     | 1             | 3.5   |
| Vinyl Chloride                             | 04-MAY-07 22:21  | 0.77   | ND W        |                   | <b></b>                                          | 1 1           | 0.5   |
| 1,3-Butadiene                              | 04-MAY-07 22:21  | 0.346  | ND UT       | μg/m³             |                                                  | 1             | 1.3   |
| 1,3-Butadiene                              | 04-MAY-07 22:21  | 0.77   | ND W        | nd/w <sub>3</sub> |                                                  | 1             | 0.5   |
| Bromomethane                               | 04-MAY-07 22:21  | 0.215  |             |                   |                                                  | 1             | 1.1   |
| Bromomethane                               | 04-MAY-07 22:21  | 0.83   | V V         |                   |                                                  | 1             | 0.5   |
| Chloroethane                               | 04-MAY-07 22:21  | 0.388  | ND UJ       | µg/m³             |                                                  | 1             | 1.9   |
| Chloroethane                               | 04-MAY-07 22:21  | 1.0    | ND W        | ppb v/v           |                                                  | 1             | 0.5   |
| Freon 11                                   | 04-MAY-07 22:21  | 0.0921 |             | μg/m³             |                                                  | 1             | 1.3 - |
| Freon 11                                   | 04-MAY-07 22:21  | 0.0921 | 0.22<br>1.2 | ppb v/v           | J                                                | 1             | 0.5   |
| cis-1,2-Dichloroethene                     | 04-MAY-07 22:21  | 0.32   |             | ug/m³             | J                                                | 1             | 2.8   |
| cis-1,2-Dichloroethene                     | 04-MAY-07 22:21  |        | ND          | v\v dqq           |                                                  | 1             | 0.5   |
| Carbon Disulfide                           | 04-MAY-07 22:21  | 0.40   | ND          | μg/m³             |                                                  | 1             | 2.0   |
| Carbon Dïsulfide                           | 04-MAY-07 22:21  | 0.111  | ND          | v\v dag           |                                                  | 1             | 0.5   |
| Freon 113                                  | 04-MAY-07 22:21  | 0.35   | ND :        | μg/m³             |                                                  | 1             | 1.6   |
| Freon 113                                  | 04-MAY-07 22:21  | 0.0950 | ND          | v/v dqq           |                                                  | 1             | 0.5   |
| Acetone                                    | 04-MAY-07 22:21  | 0.73   | ND          | ug/m³             |                                                  | 1             | 3.8   |
| Acetone                                    | 04-MAY-07 22:21  | 0.113  | 5.8         | v/v dqq           |                                                  | 1             | 0.5   |
| Methylene Chloride                         |                  | 0.27   | 14.         | µg/m³             |                                                  | 1             | 1.2   |
| Methylene Chloride                         | 04-MAY-07 22:21  | 0.168  | ND          | ppb v/v           |                                                  | 1             | 0.5   |
| trans-1,2-Dichloroethene                   | 04-MAY-07 22:21  | 0.58   | ND          | μg/m³             |                                                  | 1             | 1.7   |
| trans-1,2-Dichloroethene                   | 04-MAY-07 22:21  | 0.118  | ND          | ppb v/v           |                                                  | 1             | 0.5   |
| 1,1-Dichloroethane                         | 04-MAY-07 22:21  | 0.47   | ND          | μg/m³             |                                                  | 1             | 2.0   |
| 1,1-Dichloroethane                         | 04-MAY-07 22:21  | 0.116  | ND          | ppb v/v           |                                                  | 1             | 0.5   |
| Methyl t-Butyl Ether                       | 04-MAY-07 22:21  | 0.47   | ND          | μg/m³             |                                                  | 1             | 2.0   |
| Methyl t-Butyl Ether  Methyl t-Butyl Ether | 04-MAY-07 22:21  | 0.147  | ND          | ppb v/v           |                                                  | 1             | 0.5   |
| Vinyl Acetate                              | 04-MAY-07 22:21  | 0.53   | ND          | μg/m³             |                                                  | 1             | 1.8   |
| Vinyl Acetate<br>Vinyl Acetate             | 04-MAY-07 22:21  | 0.133  | ND          | ppb v/v           |                                                  | 1             | 0.5   |
| 1,1-Dichloroethene                         | 04-MAY-07 22:21  | 0.47   | ND          | μg/m³             |                                                  | 1             | 1.8   |
| 1,1-Dichioroethene<br>1,1-Dichloroethene   | 04-MAY-07 22:21  | 0.109  | ND          | v\v dqq           |                                                  | 1             | 0.5   |
| 2 Putanana                                 | 04-MAY+07 22:21  | 0.43   | ND          | µg/m³             |                                                  | 1             | 2.0   |
| 2-Butanone                                 | 04-MAY-07 22:21  | 0.182  | ND          | ppb v/v           |                                                  | 1             | 0.5   |
| 2-Butanone                                 | 04-MAY-07 22:21  | 0.54   | ND          | µg/m³             |                                                  | 1             | 1.5   |
| Ethyl Acetate                              | 04-MAY-07 22:21  | 0.273  | ND          | ppb v/v           |                                                  | 1             | 0.5   |



Form RLIMS63A-V1.4 05100710491954

Page 25

### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 10-MAY-07 10:49 Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E02392 DCL Report Group..: 07E-0361-01

| Analyte                    | Date<br>Analyzed                   | MDL    | Result    | Units              | Qual.       | Dilution       | PQL |
|----------------------------|------------------------------------|--------|-----------|--------------------|-------------|----------------|-----|
| Ethyl Acetate              | 04-MAY-07 22:21                    | 0.98   | ND        | ug/m³              |             | 1              | 1.8 |
| Hexane                     | 04-MAY-07 22:21                    | 0.121  | 1.0       | ppb v/v            |             | $\frac{1}{1}$  | 0.5 |
| Hexane                     | 04-MAY-07 22:21                    | 0.43   | 3.6 .     | ug/m³              |             | 1              | 1.8 |
| Chloroform                 | 04-MAY-07 22:21                    | 0.115  | ND        | ppb v/v            |             | 1 1            | 0.5 |
| Chloroform                 | 04-MAY-07 22:21                    | 0.56   | ND        | ug/m³              |             | 1              | 2.4 |
| 1,1,1-Trichloroethane      | 04-MAY-07 22:21                    | 0.0725 | ND        | ppb v/v            |             | 1 1            | 0.5 |
| 1,1,1-Trichloroethane      | 04-MAY-07 22:21                    | 0.40   | ND        | µq/m³              |             | 1              | 2.7 |
| Carbon Tetrachloride       | 04-MAY-07 22:21                    | 0.0657 | ND        | ppb v/v            |             | 1              | 0.5 |
| Carbon Tetrachloride       | 04-MAY-07 22:21                    | 0.41   | ND        | μg/m³              |             | 1              | 3.1 |
| Benzene                    | 04-MAY-07 22:21                    | 0.102  | 0.32      | ppb v/v            | J           | 1              | 0.5 |
| Benzene                    | 04-MAY-07 22:21                    | 0.33   | 1.0       | µg/m³              | J           | 1              | 1.6 |
| Tetrahydrofuran            | 04-MAY-07 22:21                    | 0.227  | ND        | v/v dqq            |             | 1              | 0.5 |
| Tetrahydrofuran            | 04-MAY-07 22:21                    | 0.67   | ND        | μg/m³              |             | 1              | 1.5 |
| 1,2-Dichloroethane         | 04-MAY-07 22:21                    | 0.153  | ND        | y\v dqq            |             | 1              | 0.5 |
| 1,2-Dichloroethane         | 04-MAY-07 22:21                    | 0.62   | ND        | µg/m³              |             | 1              | 2.0 |
| Cyclohexane<br>Cyclohexane | 04-MAY-07 22:21                    | 0.120  | 0.51      | ppb v/v            |             | 1              | 0.5 |
| Trichloroethene            | 04-MAY-07 22:21                    | 0.41   | 1.7       | μg/m³              |             | 1              | 1.7 |
| Trichloroethene            | 04-MAY-07 22:21                    | 0.120  | ND        | ppb v/v            |             | 1              | 0.5 |
| 1,2-Dichloropropane        | 04-MAY-07 22:21                    | 0.64   | ND        | µg/m³              |             | 1              | 2.7 |
| 1,2-Dichloropropane        | 04-MAY-07 22:21                    | 0.123  | ND        | ppb v/v            |             | 1              | 0.5 |
| Bromodichloromethane       | 04-MAY-07 22:21                    | 0.57   | ND        | μg/m³              |             | 1              | 2.3 |
| Bromodichloromethane       | 04-MAY-07 22:21                    | 0.0779 | ND        | ppb v/v            |             | 1              | 0.5 |
| Heptane                    | 04-MAY-07 22:21                    | 0.52   | ND        | μg/m³·             |             | 1              | 3.3 |
| Heptane                    | 04-MAY-07 22:21                    | 0.101  | 0.86      | ppb v/v            |             | 1              | 0.5 |
| cis-1,3-Dichloropropene    | 04-MAY-07 22:21                    | 0.41   | 3.5       | µg/m³              |             | 1              | 2.0 |
| cis-1,3-Dichloropropene    | 04-MAY-07 22:21<br>04-MAY-07 22:21 | 0.106  | ND        | ppb v/v            |             | 1              | 0.5 |
| 4-Methyl-2-Pentanone       | 04-MAY-07 22:21<br>04-MAY-07 22:21 | 0.48   | ND        | µg/m³              |             | 1              | 2.3 |
| 4-Methyl-2-Pentanone       | 04-MAY-07 22:21<br>04-MAY-07 22:21 | 0.116  | ND        | ppb v/v            |             | 1.             | 0.5 |
| Toluene                    | 04-MAY-07 22:21                    | 0.48   | ND<br>1 2 | ug/m³              |             |                | 2.0 |
| Toluene                    | 04-MAY-07 22:21                    | 0.115  | 1.2       | v/v dqq            |             | 1              | 0.5 |
| trans-1,3-Dichloropropene  | 04-MAY-07 22:21                    | 0.130  | 4.6       | μg/m³              |             | 1              | 1.9 |
| trans-1,3-Dichloropropene  | 04-MAY-07 22:21                    | 0.130  | ND        | v/v dqq            |             | 1 1            | 0.5 |
| 1,1,2-Trichloroethane      | 04-MAY-07 22:21                    | 0.0972 | ND<br>ND  | ug/m³              |             | 1              | 2.3 |
| 1,1,2-Trichloroethane      | 04-MAY-07 22:21                    | 0.0372 | ND        | ppb v/v            |             | 1              | 0.5 |
| Tetrachloroethene          | 04-MAY-07 22:21                    | 0.0847 | 0.15      | μg/m <sup>3</sup>  |             | 1              | 2.7 |
| Tetrachloroethene          | 04-MAY-07 22:21                    | 0.57   | 1.0       | ppb v/v            | J           | 1              | 0.5 |
| 2-Hexanone                 | 04-MAY-07 22:21                    | 0.136  | ND ND     | μg/m³<br>v/v dqq   | J           | 1              | 3.4 |
| 2-Hexanone                 | 04-MAY-07 22:21                    | 0.56   | ND        | hd/w <sub>3</sub>  |             | $\frac{1}{1}$  | 0.5 |
| Dibromochloromethane       | 04-MAY-07 22:21                    | 0:0792 | ND        | ppb v/v            |             | 1              | 2.0 |
| Dibromochloromethane       | 04-MAY-07 22:21                    | 0.67   | ND        | hd/w <sub>3</sub>  |             | 1              | 0.5 |
| 1,2-Dibromoethane          | 04-MAY-07 22:21                    | 0.119  | ND        | ppb v/v            |             | $\frac{1}{1}$  | 4.2 |
| l,2-Dibromoethane          | 04-MAY-07 22:21                    | 0.91   | ND        | hd/w <sub>3</sub>  |             | $\frac{1}{1}$  | 0.5 |
| Chlorobenzene              | 04-MAY-07 22:21                    | 0.0882 | ND        | ppb v/v            |             | 1 1            | 3.8 |
| Chlorobenzene              | 04-MAY-07 22:21                    | 0.41   | ND        | nd/w <sub>3</sub>  | <del></del> | 1              | 0.5 |
| Ethylbenzene               | 04-MAY-07 22:21                    | 0.150  | 0.50      | v\v dqq            |             | 1              | 2.3 |
| Ethylbenzene               | 04-MAY-07 22:21                    | 0.65   | 2.2       | hd/w <sub>3</sub>  |             | $\frac{1}{1}$  | 0.5 |
| n,p-Xylene                 | 04-MAY-07 22:21                    | 0.213  | 0.94      | ppb v/v            | J           | $\frac{1}{1}$  | 2.2 |
| n,p-Xylene                 | 04-MAY-07 22:21                    | 0.92   | 4.1       | hd/w <sub>3</sub>  | J           | 1              | 1.0 |
| -Xylene                    | 04-MAY-07 22:21                    | 0.113  | 0.50      | ppb v/v            | J           | 1 .            | 4.3 |
| -Xylene                    | 04-MAY-07 22:21                    | 0.49   | 2.2       | ug/m³              | J           | $\frac{1}{1}$  | 0.5 |
| Styrene                    | 04-MAY-07 22:21                    | 0.0748 | ND        | ppb v/v            | <del></del> | $\frac{1}{1}$  | 2.2 |
| Styrene                    | 04-MAY-07 22:21                    | 0.32   | ND        | hd/m <sub>3</sub>  |             |                | 0.5 |
| 3romoform -                | 04-MAY-07 22:21                    | 0.0884 | ND        | ppb v/v            |             | $\frac{1}{1}$  | 2.1 |
| romoform                   | 04-MAY-07 22:21                    | 0.90   | ND .      | had/w <sub>3</sub> |             | $-\frac{1}{1}$ | 0.5 |
| ,1,2,2-Tetrachloroethane   | 04-MAY-07 22:21                    | 0.108  | ND        | ppb v/v            | <del></del> | $\frac{1}{1}$  | 5.1 |
| ,1,2,2-Tetrachloroethane   | 04-MAY-07 22:21                    | 0.74   | ND        | hd/w <sub>3</sub>  | <del></del> |                | 0.5 |
| Senzyl Chloride            | 04-MAY-07 22:21                    | 0.136  | ND        | ppb v/v            |             | . 1            | 3.4 |



Form RLIMS63A-V1.4 05100710491954

Page 26



# SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 10-MAY-07 10:49 Client Name..... Weston Solutions, Inc.

DCL Sample Name...: 07E02392 DCL Report Group..: 07E-0361-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Qual.    | Dilution                                         | PQL |
|------------------------|------------------|--------|--------|---------|----------|--------------------------------------------------|-----|
| Benzyl Chloride        | 04-MAY-07 22:21  | 0.70   | ND     | ug/m³   |          | 1                                                | 2.6 |
| 4-Ethyl toluene        | 04-MAY-07 22:21  | 0.0983 | ND     | v/v dgg |          | 1 1                                              | 0.5 |
| 4-Ethyl toluene        | 04-MAY-07 22:21  | 0.48   | ND     | nd/m3   |          | 1 1                                              | 2.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 22:21  | 0.112  | 0.15   | v\v dqq | J        | 1 1                                              | 0.5 |
| 1,3,5-Trimethylbenzene | 04-MAY-07 22:21  | 0.55   | 0.76   | ug/m³   | J        | 1 1                                              | 2.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 22:21  | 0.117  | 0.64   | ppb v/v | <u> </u> | 1 1                                              | 0.5 |
| 1,2,4-Trimethylbenzene | 04-MAY-07 22:21  | 0.58   | 3.2    | µg/m³   |          | 1 1                                              | 2.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 22:21  | 0.120  | ND     | ppb v/v |          | 1 1                                              | 0.5 |
| 1,3-Dichlorobenzene    | 04-MAY-07 22:21  | 0.72   | ND     | nd/m3   |          | <del>                                     </del> | 3.0 |
| 1,4-Dichlorobenzene    | 04-MAY-07 22:21  | 0.0987 | ND     | v\v daa |          | 1 1                                              | 0.5 |
| 1,4-Dichlorobenzene    | 04-MAY-07 22:21  | 0.59   | ND     | na/w3   |          | 1 1                                              | 3.0 |
| 1,2-Dichlorobenzene    | 04-MAY-07 22:21  | 0.0851 | ND     | v\v dag |          | 1 1                                              | 0.5 |
| 1,2-Dichlorobenzene    | 04-MAY-07 22:21  | 0.51   | ND     | µg/m³   |          | <del> </del>                                     | 3:0 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 22:21  | 0.115  | ND     | v\v dag |          | <del>                                     </del> | 0.5 |
| 1,2,4-Trichlorobenzene | 04-MAY-07 22:21  | 0.85   | ND     | nd/w3   |          | <del>                                     </del> | 3.7 |
| Hexachlorobutadiene    | 04-MAY-07 22:21  | 0.119  | ND     | ppb v/v |          | <del>                                     </del> | 0.5 |
| Hexachlorobutadiene    | 04-MAY-07 22:21  | 1.3    | ND     | nd/w3.  | ·        | + + +                                            | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
| Unknown fluorocarbon(4.55)  | 04-MAY-07 22:21  | 2.7    | v\v daa | J     | 1        |
| Isobutane(4.65)             | 04-MAY-07 22:21  | 2.3    | v\v dag | J     | 1 1      |
| Ethanol (5.46)              | 04-MAY-07 22:21  | 5.6    | v\v dag | ıт    | 1 1      |
| Unknown fluorocarbon(13.78) | 04-MAY-07 22:21  | 7.9    | ppb v/v | J     | 1 1      |

# BEHR VOC PLUME SITE DAYTON, OHIO DATA VALIDATION REPORT

**Date:** June 5, 2007

Laboratory: DataChem Laboratories, Inc. (DataChem), Salt Lake City, Utah

Laboratory SDG #/Set ID #: BEHR/07E-0367-01

Data Validation Performed By: Lisa Graczyk, Dynamac Corporation (Dynamac),

subcontractor to Weston Solutions, Inc. (Weston)

Weston Analytical Work Order #/TDD #: 20405.016.003.0121.00/S05-0612-007

This data validation report has been prepared by Dynamac, a Weston subcontractor, under the START III Region V contract. This report documents the data validation of air samples collected for the Behr VOC Plume Site that were analyzed for Volatile Organic Compounds (VOC) by U.S. Environmental Protection Agency (U.S. EPA) method TO-15. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Organic Data Review" dated October 1999.

#### **VOCs in Air by U.S. EPA Method TO15**

#### 1. Samples

The following table summarizes the samples for which this data validation is being conducted.

| <u>Samples</u> | Lab ID   | <u>Matrix</u> | <u>Date</u><br><u>Collected</u> | <u>Date</u><br><u>Prepared</u> | <u>Date</u><br><u>Analyzed</u> |
|----------------|----------|---------------|---------------------------------|--------------------------------|--------------------------------|
| EPA-22-IA      | 07E02430 | Air           | 05/03/07                        | NA                             | 05/08/07                       |
| EPA-23-SS      | 07E02431 | Air           | 05/03/07                        | NA                             | 05/08/07                       |
| EPA-24-SS      | 07E02432 | Air           | 05/03/07                        | NA                             | 05/08/07                       |
| EPA-25-SS      | 07E02433 | Air           | 05/03/07                        | NA                             | 05/10/07                       |

#### 2. Holding Times

The samples were analyzed within the required holding time limit of 30 days from sample collection in accordance with method TO-15.

#### 3. Instrument Performance Check

The instrument performance check using bromofluorobenzene (BFB) was performed within the 24-hour period for which the samples were analyzed as required for method TO-15. The BFB standard met the ion abundance criteria specified in method TO-15.

Laboratory WO #: BEHR/07E-0367-01

#### 4. <u>Initial Calibration</u>

For the initial calibration, the percent relative standard deviations (%RSD) for all compounds were less than 30 percent. The average relative response factors were all greater than 0.05.

# 5. <u>Continuing Calibration</u>

The percent differences (%D) in the continuing calibration standard for all target compounds were within the control limit of less than or equal to 25 percent except for as follows.

In the calibration standard associated with sample EPA-25-SS, the following compounds were outside the quality control limits: dichlorodifluoromethane; tetrahydrofuran; 1,1,1-trichloroethane; carbon tetrachloride; and hexachlorobutadiene. In sample EPA-25-SS, positive results for these compounds were flagged "J" and the quantitation limits for non-detected results were flagged "UJ" as estimated.

#### 6. Blanks

The method blank associated with the samples was free of target compound contamination except for acetone which was detected at 0.35 parts per billion. Because acetone was detected at more than 10 times the blank concentration in the samples, no qualifications were required.

#### 7. Surrogates

The 4-bromofluorobenzene surrogate spike recoveries in the samples were within the quality control (QC) limits.

#### 8. <u>Laboratory Control Sample (LCS)</u>

All LCS recoveries and LCS duplicate recoveries were within the laboratory-established QC limits of 70 to 130 percent recovery except for 1,2,4-trichlorobenzene and hexachlorobutadiene which were detected low in the LCS. The quantitation limits for these two compounds were flagged "UJ" as estimated in the samples.

### 9. <u>Internal Standard Results</u>

The internal standard area counts in the samples were within -50 percent to +100 percent of the area counts of the associated continuing calibration standard. The retention time of

Data Validation Report Behr VOC Plume Site DataChem Laboratories

Laboratory WO #: BEHR/07E-0367-01

the internal standards did not vary more than  $\pm 30$  seconds from the retention time of the associated continuing calibration standard.

### 10. <u>Target Compound Identification</u>

A spot-check was performed of the mass spectra for detected compounds. The spot-check confirmed compound identification. DataChem appropriately flagged those results detected above the method detection limit but below the quantitation limit as "J" or estimated.

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0367-01

# **ATTACHMENT**

# DATACHEM LABORATORIES RESULTS SUMMARY



Form RLIMS63A-V1.4 05140711182227

Page 12



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 14-MAY-07 11:18

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: Not Provided

Sampling Site..... Behr VOC Plume PRP

Release Number....: 055729

Date Received.....: 07-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-22-IA DCL Sample Name...: 07E02430 DCL Report Group..: 07E-0367-01

Matrix.... AIR

Date Sampled....: 03-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....: ☒ As Received ☐ Dried

DCL Analysis Group: G074801F Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-W  $\texttt{Column Type.} \ldots : \texttt{DB-1}$ 

> X Primary ☐ Confirmation

| Analyte                  | Date<br>Analyzed | MDL    | Result   | Units             | Oual.        | Dilution      | DOL   |
|--------------------------|------------------|--------|----------|-------------------|--------------|---------------|-------|
| Propene                  | 08-MAY-07 17:31  | 0.180  | ND       | ppb v/v           | Qual.        |               | PQL   |
| Propene                  | 08-MAY-07 17:31  | 0.31   | ND       |                   | ļ            | 1 1           | 0.5   |
| Dichlorodifluoromethane  | 08-MAY-07 17:31  | 0.0669 | 0.54     | ppb v/v           | <del> </del> | $\frac{1}{1}$ | 0.86  |
| Dichlorodifluoromethane  | 08-MAY-07 17:31  | 0.33   | 2.7      | ha/w <sub>3</sub> | <del> </del> | 1 1           | 0.5   |
| Chloromethane            | 08-MAY-07 17:31  | 0.249  | ND       | pg/m³             | ļ            | 1 1           | 2.5   |
| Chloromethane            | 08-MAY-07 17:31  | 0.51   | ND       | hd/w <sub>3</sub> | <del> </del> | 1 1           | 0.5   |
| Freon 114                | 08-MAY-07 17:31  | 0.156  | ND       | pg/m³             | <del> </del> | 1 1           | 1.0   |
| Freon 114                | 08-MAY-07 17:31  | 1.1    | ND       | ha/w <sub>3</sub> | <del> </del> | 1 1           | 0.5   |
| Vinyl Chloride           | 08-MAY-07 17:31  | 0.301  | ND       | pg/m³             | <del> </del> | 1 1           | 3.5   |
| Vinyl Chloride           | 08-MAY-07 17:31  | 0.77   | ND       | ha/w <sub>3</sub> | ļ            | 1 1           | 0.5   |
| 1,3-Butadiene            | 08-MAY-07 17:31  | 0.346  | ND       | v\v daa           |              | 1             | 1.3   |
| 1,3-Butadiene            | 08-MAY-07 17:31  | 0.77   | ND       | hd/w <sub>3</sub> |              | 1             | 0.5   |
| Bromomethane             | 08-MAY-07 17:31  | 0.215  | ND       | ppb v/v           |              | 1             | 1.1   |
| Bromomethane             | 08-MAY-07 17:31  | 0.83   | ND       | ha/w <sub>3</sub> | <b></b>      | 1             | 0.5   |
| Chloroethane             | 08-MAY-07 17:31  | 0.388  | ND       | μαν ν/ν           |              | 1             | 1.9   |
| Chloroethane             | 08-MAY-07 17:31  | 1.0    | ND       | hd/w <sub>3</sub> |              | 1 1           | 0.5   |
| Freon 11                 | 08-MAY-07 17:31  | 0.0921 | 0.27     | bbp n\n           | <del>-</del> | 1             | 1.3 - |
| Freon 11                 | 08-MAY-07 17:31  | 0.52   | 1.5      |                   | J            | 1             | 0.5   |
| cis-1,2-Dichloroethene   | 08-MAY-07 17:31  | 0.102  | ND ND    | μg/m³             | J            | 1             | 2.8   |
| cis-1,2-Dichloroethene   | 08-MAY-07 17:31  | 0.40   | ND       |                   |              | 1             | 0.5   |
| Carbon Disulfide         | 08-MAY-07 17:31  | 0.111  | ND       | µg/m³             |              | 1             | 2.0   |
| Carbon Disulfide         | 08-MAY-07 17:31  | 0.35   | ND       | ppb v/v           |              | 1             | 0.5   |
| Freon 113                | 08-MAY-07 17:31  | 0.0950 | ND       | µg/m³             |              | 1             | 1.6   |
| Freon 113                | 08-MAY-07 17:31  | 0.73   | ND       | ppb v/v           |              | 1             | 0.5   |
| Acetone                  | 08-MAY-07 17:31  | 1.1    | 140      | ug/m³             |              | 1             | 3.8   |
| Acetone                  | 08-MAY-07 17:31  | 2.7    | 330      | v/v dqq           | В            | 10            | 5.0   |
| Methylene Chloride       | 08-MAY-07 17:31  | 0.168  | ND       | ha/w3             | В            | 10            | 12.   |
| Methylene Chloride       | 08-MAY-07 17:31  | 0.168  |          | v/v dqq           |              | 1             | 0.5   |
| trans-1,2-Dichloroethene | 08-MAY-07 17:31  | 0.118  | ND       | µg/m³             |              | 1             | 1.7   |
| trans-1,2-Dichloroethene | 08-MAY-07 17:31  | 0.47   | ND<br>ND | v/v dqq           |              | 1             | 0.5   |
| 1,1-Dichloroethane       | 08-MAY-07 17:31  | 0.116  | ND       | µg/m³             |              | 1             | 2.0   |
| 1,1-Dichloroethane       | 08-MAY-07 17:31  | 0.47   | ND<br>ND | _ppb_v/v          |              | 1             | 0.5   |
| Methyl t-Butyl Ether     | 08-MAY-07 17:31  | 0.147  |          | µg/m³             |              | 1             | 2.0   |
| Methyl t-Butyl Ether     | 08-MAY-07 17:31  | 0.53   | ND       | ppb v/v           |              | 1             | 0.5   |
| Vinyl Acetate            | 08-MAY-07 17:31  | 0.53   | ND       | µg/m³             |              | 1             | 1.8   |
| Vinyl Acetate            | 08-MAY-07 17:31  | 0.133  | ND       | _ppb_v/v          |              | 1             | 0.5   |
| 1,1-Dichloroethene       | 08-MAY-07 17:31  | 0.47   | ND       | ug/m³             |              | 1             | 1.8   |
| 1,1-Dichloroethene       | 08-MAY-07 17:31  |        | ND       | v/v dqq           |              | 1             | 0.5   |
| 2-Butanone               | 08-MAY-07 17:31  | 0.43   | ND       | μg/m³             |              | 1             | 2.0   |
| 2-Butanone               | 08-MAY-07 17:31  | 0.182  | 0.72     | v/v dqq           |              | 1             | 0.5   |
| Ethyl Acetate            | 08-MAY-07 17:31  | 0.54   | 2.1      | na/w3             |              | 1             | 1.5   |
|                          | 100-MAI-0/ 1/:31 | 0.273  | 7.7      | ppb v/v           |              | 1             | 0.5   |



Form RLIMS63A-V1.4 05140711182227 Page 13

### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 14-MAY-07 11:18 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02430 DCL Report Group..: 07E-0367-01

| Analyte                                     | Date<br>Analyzed                   | MDL    | Result   | Units             | Oual.                                            | Dilution                                                           | PQL        |
|---------------------------------------------|------------------------------------|--------|----------|-------------------|--------------------------------------------------|--------------------------------------------------------------------|------------|
| Ethyl Acetate                               | 08-MAY-07 17:31                    | 0.98   | 28.      | µg/m³             | Quai.                                            | +                                                                  |            |
| Hexane                                      | 08-MAY-07 17:31                    | 0.121  | ND ND    | ppb v/v           |                                                  | 1 1                                                                | 1.8        |
| Hexane                                      | 08-MAY-07 17:31                    | 0.43   | ND       | hd/w <sub>3</sub> |                                                  | $\frac{1}{1}$                                                      | 0.5        |
| Chloroform                                  | 08-MAY-07 17:31                    | 0.115  | ND       | ppb v/v           | <del> </del>                                     |                                                                    | 1.8        |
| Chloroform                                  | 08-MAY-07 17:31                    | 0.56   | ND       | hd/w <sub>3</sub> | <del> </del>                                     | $\begin{array}{ c c }\hline & 1 \\\hline & 1 \\\hline \end{array}$ | 0.5        |
| 1,1,1-Trichloroethane                       | 08-MAY-07 17:31                    | 0.0725 | ND       | ppb v/v           | <del>                                     </del> |                                                                    | 2.4        |
| 1,1,1-Trichloroethane                       | 08-MAY-07 17:31                    | 0.40   | ND       | ha/w <sub>3</sub> | <del> </del>                                     | 1 1                                                                | 0.5        |
| Carbon Tetrachloride                        | 08-MAY-07 17:31                    | 0.0657 | ND       | ppb v/v           |                                                  | 1                                                                  | 2.7        |
| Carbon Tetrachloride                        | 08-MAY-07 17:31                    | 0.41   | ND       | hd/w <sub>3</sub> |                                                  |                                                                    | 0.5<br>3.1 |
| Benzene                                     | 08-MAY-07 17:31                    | 0.102  | 0.42     | ppb v/v           | J                                                | $+\frac{1}{1}$                                                     |            |
| Benzene                                     | 08-MAY-07 17:31                    | 0.33   | 1.4      | hd/w <sub>3</sub> | J                                                | $\frac{1}{1}$                                                      | 0.5        |
| Tetrahydrofuran                             | 08-MAY-07 17:31                    | 0.227  | ND       | ppb v/v           | - ·                                              | $\frac{1}{1}$                                                      | 1.6<br>0.5 |
| Tetrahydrofuran                             | 08-MAY-07 17:31                    | 0.67   | ND       | nd/w <sub>3</sub> | <u> </u>                                         | $\frac{1}{1}$                                                      |            |
| 1,2-Dichloroethane                          | 08-MAY-07 17:31                    | 0.153  | ND       | ppb v/v           |                                                  | $\frac{1}{1}$                                                      | 1.5<br>0.5 |
| 1,2-Dichloroethane                          | 08-MAY-07 17:31                    | 0.62   | ND       | hd/m3             |                                                  | 1 1                                                                | 2.0        |
| Cyclohexane                                 | 08-MAY-07 17:31                    | 0.120  | ND       | ppb v/v           |                                                  | 1 1                                                                | 0.5        |
| Cyclohexane                                 | 08-MAY-07 17:31                    | 0.41   | ND       | μg/m <sup>3</sup> | · · · · · · · · · · · · · · · · · · ·            | 1                                                                  | 1.7        |
| Trichloroethene                             | 08-MAY-07 17:31                    | 0.120  | 0.96     | v/v dag           |                                                  | $\frac{1}{1}$                                                      | 0.5        |
| Trichloroethene                             | 08-MAY-07 17:31                    | 0.64   | 5.2      | nd/m3             |                                                  | 1                                                                  | 2.7        |
| 1,2-Dichloropropane                         | 08-MAY-07 17:31                    | 0.123  | ND       | v\v dqq           |                                                  | $\frac{1}{1}$                                                      | 0.5        |
| 1,2-Dichloropropane                         | 08-MAY-07 17:31                    | 0.57   | ND       | nd/m3             |                                                  | 1                                                                  | 2.3        |
| Bromodichloromethane                        | 08-MAY-07 17:31                    | 0.0779 | ND       | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| Bromodichloromethane                        | 08-MAY-07 17:31                    | 0.52   | ND       | na/w3             |                                                  | 1                                                                  | 3.3        |
| Heptane                                     | 08-MAY-07 17:31                    | 0.101  | 0.11     | ppb v/v           | J                                                | 1                                                                  | 0.5        |
| Heptane                                     | 08-MAY-07 17:31                    | 0.41   | 0.45     | µg/m³             | J                                                | 1                                                                  | 2.0        |
| cis-1,3-Dichloropropene                     | 08-MAY-07 17:31                    | 0.106  | ND       | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| cis-1,3-Dichloropropene                     | 08-MAY-07 17:31                    | 0.48   | ND       | µq/m³             |                                                  | 1                                                                  | 2.3        |
| 4-Methyl-2-Pentanone                        | 08-MAY-07 17:31                    | 0.116  | ND       | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| 4-Methyl-2-Pentanone                        | 08-MAY-07 17:31                    | 0.48   | ND       | µg/m³             |                                                  | 1                                                                  | 2.0        |
| Toluene                                     | 08-MAY-07 17:31                    | 0.115  | 1.0      | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| Toluene                                     | 08-MAY-07 17:31                    | 0.43   | 3.8      | μg/m³             |                                                  | 1                                                                  | 1.9        |
| trans-1,3-Dichloropropene                   | 08-MAY-07 17:31                    | 0.130  | ND       | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| trans-1,3-Dichloropropene                   | 08-MAY-07 17:31                    | 0.59   | ND       | µg/m³             |                                                  | 1                                                                  | 2.3 -      |
| 1,1,2-Trichloroethane 1,1,2-Trichloroethane | 08-MAY-07 17:31                    | 0.0972 | ND       | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| Tetrachloroethene                           | 08-MAY-07 17:31                    | 0.53   | ND       | µg/m³             |                                                  | 1                                                                  | 2.7        |
| Tetrachloroethene                           | 08-MAY-07 17:31                    | 0.0847 | ND       | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| 2-Hexanone                                  | 08-MAY-07 17:31                    | 0.57   | ND       | µg/m³             |                                                  | 1                                                                  | 3.4        |
| 2-Hexanone                                  | 08-MAY-07 17:31                    | 0.136  | ND       | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| Dibromochloromethane                        | 08-MAY-07 17:31                    | 0.56   | ND       | µg/m³             |                                                  | 1                                                                  | 2.0        |
| Dibromochloromethane                        | 08-MAY-07 17:31                    | 0.0792 | ND       | v/v dqq           |                                                  | 1                                                                  | 0.5        |
| 1,2-Dibromoethane                           | 08-MAY-07 17:31                    | 0.67   | ND       | μg/m³             |                                                  | 1                                                                  | 4.2        |
| 1,2-Dibromoethane                           | 08-MAY-07 17:31                    | 0.119  | ND       | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| Chlorobenzene                               | 08-MAY-07 17:31                    | 0.91   | ND       | ug/m³             |                                                  | 1                                                                  | 3.8        |
| Chlorobenzene                               | 08-MAY-07 17:31<br>08-MAY-07 17:31 | 0.0882 | ND       | v/v dqq           |                                                  | 1                                                                  | 0.5        |
| Ethylbenzene                                | 08-MAY-07 17:31                    | 0.41   | ND ND    | µg/m³             |                                                  | 1                                                                  | 2.3        |
| Ethylbenzene                                | 08-MAY-07 17:31<br>08-MAY-07 17:31 | 0.150  | ND       | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| m,p-Xylene                                  | 08-MAY-07 17:31                    | 0.65   | ND       | ha/w3             |                                                  | 1                                                                  | 2.2        |
| m,p-Xylene                                  | 08-MAY-07 17:31<br>08-MAY-07 17:31 | 0.213  | 0.44     | ppb v/v           | J                                                | 11                                                                 | 1.0        |
| o-Xylene                                    | 08-MAY-07 17:31                    | 0.92   | 1.9      | µg/m³             | _ <u>J</u>                                       | 1                                                                  | 4.3        |
| o-Xylene                                    | 08-MAY-07 17:31                    | 0.113  | 0.14     | ppb v/v           | J                                                | 1                                                                  | 0.5        |
| Styrene                                     | 08-MAY-07 17:31                    | 0.49   | 0.62     | µg/m³             | J                                                | 1                                                                  | 2.2        |
| Styrene                                     | 08-MAY-07 17:31                    | 0.0748 | 0.23     | ppb v/v           | <u> </u>                                         | 1                                                                  | 0.5        |
| Bromoform                                   | 08-MAY-07 17:31                    | 0.32   | 0.98     | µg/m³             | J                                                | 1                                                                  | 2.1        |
| Bromoform                                   | 08-MAY-07 17:31                    | 0.90   | ND<br>ND | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| 1,1,2,2-Tetrachloroethane                   | 08-MAY-07 17:31                    | 0.108  | ND       | ug/m³             |                                                  | 1                                                                  | 5.1        |
| 1,1,2,2-Tetrachloroethane                   | 08-MAY-07 17:31                    | 0.108  | ND<br>ND | ppb v/v           |                                                  | 1                                                                  | 0.5        |
| Benzyl Chloride                             | 08-MAY-07 17:31                    | 0.136  | ND       | ppb v/v           |                                                  | 1                                                                  | 3.4        |
|                                             | 1-3 202 07 17.31                   | 3.130  | רואד     | phn A/A           |                                                  | 1                                                                  | 0.5        |



Form RLIMS63A-V1.4 05140711182227

Page 14



#### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 14-MAY-07 11:18

Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E02430

DCL Report Group..: 07E-0367-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Oual. | Dilution | PQL |
|------------------------|------------------|--------|--------|---------|-------|----------|-----|
| Benzyl Chloride        | 08-MAY-07 17:31  | 0.70   | ND     | ug/m³   |       | 1        | 2.6 |
| 4-Ethyl toluene        | 08-MAY-07 17:31  | 0.0983 | ND     | v/v dag |       | 1 1      | 0.5 |
| 4-Ethyl toluene        | 08-MAY-07 17:31  | 0.48   | ND     | µg/m³   |       | 1 1      | 2.5 |
| 1,3,5-Trimethylbenzene | 08-MAY-07 17:31  | 0.112  | ND     | v/v dag |       | 1        | 0.5 |
| 1,3,5-Trimethylbenzene | 08-MAY-07 17:31  | 0.55   | ND     | uq/m³   |       | 1 1      | 2.5 |
| 1,2,4-Trimethylbenzene | 08-MAY-07 17:31  | 0.117  | 0.19   | v\v dag | J     | 1 1      | 0.5 |
| 1,2,4-Trimethylbenzene | 08-MAY-07 17:31  | 0.58   | 0.91   | ug/m³   | J     | 1 7 1    | 2.5 |
| 1,3-Dichlorobenzene    | 08-MAY-07 17:31  | 0.120  | ND     | ppb v/v |       | 1 1      | 0.5 |
| 1,3-Dichlorobenzene    | 08-MAY-07 17:31  | 0.72   | ND     | µg/m³   |       | 1 1      | 3.0 |
| 1,4-Dichlorobenzene    | 08-MAY-07 17:31  | 0.0987 | ND     | ppb v/v |       | 1 1      | 0.5 |
| 1,4-Dichlorobenzene    | 08-MAY-07 17:31  | 0.59   | ND     | µg/m³   |       | 1 1      | 3.0 |
| 1,2-Dichlorobenzene    | 08-MAY-07 17:31  | 0.0851 | ND     | v\v dag |       | 1 1      | 0.5 |
| 1,2-Dichlorobenzene    | 08-MAY-07 17:31  | 0.51   | ND     | µg/m³   |       | 1        | 3.0 |
| 1,2,4-Trichlorobenzene | 08-MAY-07 17:31  | 0.115  | ND UJ  | v/v dag |       | 1 1      | 0.5 |
| 1,2,4-Trichlorobenzene | 08-MAY-07 17:31  | 0.85   | ND UJ  | µg/m³   |       | 1 1      | 3.7 |
| Hexachlorobutadiene    | 08-MAY-07 17:31  | 0.119  | ND U.T | v/v dag |       | 1        | 0.5 |
| Hexachlorobutadiene    | 08-MAY-07 17:31  | 1.3    | ND UJ  | μg/m³   |       | 1        | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time) | Date<br>Analyzed | Result | Units   | Oual. | Dilution |
|-------------------------|------------------|--------|---------|-------|----------|
| Propene/Propane(4.20)   | 08-MAY-07 17:31  | 4.1    | v\v dag | J     | 1        |
| Dimethyl Ether(4.38)    | 08-MAY-07 17:31  | 3.0    | v/v dag | J     | 1        |
| Isobutane(4.52)         | 08-MAY-07 17:31  | 25.    | v/v dag | J     | 1        |
| Butane (4.80)           | 08-MAY-07 17:31  | 3.5    | ppb v/v | J     | 1        |
| Ethanol (5.24)          | 08-MAY-07 17:31  | 200    | ppb v/v | J     | 1        |
| Isopropyl Alcohol(5.87) | 08-MAY-07 17:31  | 2.8    | ppb v/v | J     | 1        |

23 6|5|07



# Form RLIMS63A-V1.4 05140711182227

Page 15



#### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 14-MAY-07 11:18

Client Name..... : Weston Solutions, Inc.

Client Ref Number....: Not Provided

Sampling Site..... Behr VOC Plume PRP

Release Number....: 055729

Date Received.....: 07-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-23-SS DCL Sample Name...: 07E02431 DCL Report Group..: 07E-0367-01

Matrix..... AIR

Date Sampled....: 03-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....:

☒ As Received ☐ Dried

DCL Analysis Group: G074801F Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-W Column Type..... DB-1

X Primary ☐ Confirmation

| Analyte                  | Date<br>Analyzed  | MDL    | Result   | Units             | Oual.        | Dilution      | DOL   |
|--------------------------|-------------------|--------|----------|-------------------|--------------|---------------|-------|
| Propene                  | 08-MAY-07 18:59   | 0.180  | ND       | ppb v/v           | - Quar.      |               | PQL   |
| Propene                  | 08-MAY-07 18:59   | 0.31   | ND       | ha/w <sub>3</sub> | <del> </del> | $\frac{1}{1}$ | 0.5   |
| Dichlorodifluoromethane  | 08-MAY-07 18:59   | 0.0669 | 0.66     | v/v dag           | <del> </del> | 1 1           | 0.86  |
| Dichlorodifluoromethane  | 08-MAY-07 18:59   | 0.33   | 3.2      | na/w <sub>3</sub> |              | 1 1           | 0.5   |
| Chloromethane            | 08-MAY-07 18:59   | 0.249  | ND       | pg/m³             |              | $\frac{1}{1}$ | 2.5   |
| Chloromethane            | 08-MAY-07 18:59   | 0.51   | ND       | hd/w <sub>3</sub> |              | <del></del>   | 0.5   |
| Freon 114                | 08-MAY-07 18:59   | 0.156  | ND       | pg/m³             | <del> </del> | 1 1           | 1.0   |
| Freon 114                | 08-MAY-07 18:59   | 1.1    | ND       | ha/w <sub>3</sub> |              | 1 1           | 0.5   |
| Vinyl Chloride           | 08-MAY-07 18:59   | 0.301  | ND       | v/v dag           |              | $\frac{1}{1}$ | 3.5   |
| Vinyl Chloride           | 08-MAY-07 18:59   | 0.77   | ND       | ha/w <sub>3</sub> |              | 1             | 0.5   |
| 1,3-Butadiene            | 08-MAY-07 18:59   | 0.346  | ND       | ppb v/v           | <del> </del> | 1             | 1.3   |
| 1,3-Butadiene            | 08-MAY-07 18:59   | 0.77   | ND       | ha/w <sub>3</sub> |              |               | 0.5   |
| Bromomethane             | 08-MAY-07 18:59   | 0.215  | ND       | ppb v/v           |              | $\frac{1}{1}$ | 1.1   |
| Bromomethane             | 08-MAY-07 18:59   | 0.83   | ND       | nd/w <sub>3</sub> |              | 1 1           | 0.5   |
| Chloroethane             | 08-MAY-07 18:59   | 0.388  | ND       | v/v daa           |              |               | 1.9   |
| Chloroethane             | 08-MAY-07 18:59   | 1.0    | ND       | hd/w <sub>3</sub> |              | 1             | 0.5   |
| Freon 11                 | 08-MAY-07 18:59   | 0.0921 | 0.27     | ppb v/v           | J            | 1             | 1.3 - |
| Freon 11                 | 08-MAY-07 18:59   | 0.52   | 1.5      |                   |              | 1             | 0.5   |
| cis-1,2-Dichloroethene   | 08-MAY-07 18:59   | 0.102  | ND       | ppb v/v           | J            | 1             | 2.8   |
| cis-1,2-Dichloroethene   | 08-MAY-07 18:59   | 0.40   | ND       |                   |              | 1             | 0.5   |
| Carbon Disulfide         | 08-MAY-07 18:59   | 0.111  | 0.36     | μg/m³             |              | 1             | 2.0   |
| Carbon Disulfide         | 08-MAY-07 18:59   | 0.35   | 1.1      | ha/w <sub>3</sub> | J            | 1             | 0.5   |
| Freon 113                | 08-MAY-07 18:59   | 0.0950 | ND       | μg/m³             | J            | 1             | 1.6   |
| Freon 113                | 08-MAY-07 18:59   | 0.73   | ND       | ha/w <sub>3</sub> |              | 1             | 0.5   |
| Acetone                  | 08-MAY-07 18:59   | 0.113  | 6.5      |                   |              | 1             | 3.8   |
| Acetone                  | 08-MAY-07 18:59   | 0.27   | 15.      | ppb v/v           | В            | 1             | 0.5   |
| Methylene Chloride       | 08-MAY-07 18:59   | 0.168  | ND       | μg/m³             | B            | 1             | 1.2   |
| Methylene Chloride       | 08-MAY-07 18:59   | 0.58   | ND       |                   |              | 1             | 0.5   |
| trans-1,2-Dichloroethene | 08-MAY-07 18:59   | 0.118  | ND       | hay m3            |              | 1             | 1.7   |
| trans-1,2-Dichloroethene | 08-MAY-07 18:59   | 0.47   | ND       | hd/w <sub>3</sub> |              | 1             | 0.5   |
| 1,1-Dichloroethane       | 08-MAY-07 18:59   | 0.116  | ND       | ppb v/v           |              | 1             | 2.0   |
| 1,1-Dichloroethane       | 08-MAY-07 18:59   | 0.47   | ND       | na/w3             |              | 1             | 0.5   |
| Methyl t-Butyl Ether     | 08-MAY-07 18:59   | 0.147  | ND       |                   |              | 1             | 2.0   |
| Methyl t-Butyl Ether     | 08-MAY-07 18:59   | 0.53   | ND       | ppb v/v           |              | 1             | 0.5   |
| Vinyl Acetate            | 08-MAY-07 18:59   | 0.133  | ND<br>ND | µg/m³             |              | 1             | 1.8   |
| Vinyl Acetate            | 08-MAY-07 18:59   | 0.47   | ND       | ppb v/v           |              | 1             | 0.5   |
| 1,1-Dichloroethene       | 08-MAY-07 18:59   | 0.109  | ND       | µg/m³             |              |               | 1.8   |
| 1,1-Dichloroethene       | 08-MAY-07 18:59   | 0.109  | ND ND    | ppb v/v           |              | 1             | 0.5   |
| 2-Butanone               | 08-MAY-07 18:59   | 0.43   | 1.7      | μg/m <sup>3</sup> |              | 1             | 2.0   |
| 2-Butanone               | 08-MAY-07 18:59   | 0.182  | 4.9      | ppb v/v           |              | 1             | 0.5   |
| Ethyl Acetate            | 08-MAY-07 18:59   | 0.34   |          | µg/m³             |              | 1             | 1.5   |
|                          | [00-MAI-07 18:59] | 0.4/3  | ND       | ppb v/v           |              | 1             | 0.5   |



Form RLIMS63A-V1.4 05140711182227

Page 16



### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 14-MAY-07 11:18
Client Name....: Weston Solutions, Inc.

DCL Sample Name...: 07E02431
DCL Report Group..: 07E-0367-01

| Analyte                                             | Date                        | MTOT   | Doc: 1 ← | TT 2 4            |          |               |            |
|-----------------------------------------------------|-----------------------------|--------|----------|-------------------|----------|---------------|------------|
| Ethyl Acetate                                       | Analyzed<br>08-MAY-07 18:59 | MDL    | Result   | Units             | Qual.    | Dilution      | PQL        |
| Hexane                                              | 08-MAY-07 18:59             | 0.98   | ND       | µg/m³             |          | 1 1           | 1.8        |
| Hexane                                              | 08-MAY-07 18:59             |        | 4.3      | ppb v/v           |          | 1             | 0.5        |
| Chloroform                                          | 08-MAY-07 18:59             | 0.43   | 15.      | µg/m³             |          | 1 1           | 1.8        |
| Chloroform                                          | 08-MAY-07 18:59             | 0.115  | 0.15     | ppb v/v           | J        | 1 1           | 0.5        |
| 1,1,1-Trichloroethane                               | 08-MAY-07 18:59             | 0.0725 | 0.71     | µg/m³             | J        | 1 1           | 2.4        |
| 1,1,1-Trichloroethane                               | 08-MAY-07 18:59             | 0.40   | ND       | v/v dqq           |          | 1 1           | 0.5        |
| Carbon Tetrachloride                                | 08-MAY-07 18:59             | 0.0657 | ND       | µg/m³             |          | 1             | 2.7        |
| Carbon Tetrachloride                                | 08-MAY-07 18:59             | 0.0657 | ND<br>ND | ppb v/v           |          | 1 1           | 0.5        |
| Benzene                                             | 08-MAY-07 18:59             | 0.102  | 0.94     | µg/m³             |          | 1 1           | 3.1        |
| Benzene                                             | 08-MAY-07 18:59             | 0.102  | 3.0      | ppb v/v           |          | 1             | 0.5        |
| Tetrahydrofuran                                     | 08-MAY-07 18:59             | 0.227  | ND ND    | µg/m³             |          | 1             | 1.6        |
| Tetrahydrofuran                                     | 08-MAY-07 18:59             | 0.67   | ND       | ppb v/v           |          | 1 1           | 0.5        |
| 1,2-Dichloroethane                                  | 08-MAY-07 18:59             | 0.153  | ND       | ppb v/v           |          | 1             | 1.5        |
| 1,2-Dichloroethane                                  | 08-MAY-07 18:59             | 0.62   | ND       | hd/w <sub>3</sub> |          | 1 1           | 0.5        |
| Cyclohexane                                         | 08-MAY-07 18:59             | 0.120  | 1.6      | pgb v/v           |          | 1             | 2.0        |
| Cyclohexane                                         | 08-MAY-07 18:59             | 0.41   | 5.6      | hd/w <sub>3</sub> |          | 1             | 0.5        |
| Trichloroethene                                     | 08-MAY-07 18:59             | 0.120  | ND ND    | hd/m,             |          | 1             | 1.7        |
| Trichloroethene                                     | 08-MAY-07 18:59             | 0.64   | ND       | hd/w <sub>3</sub> |          | 1             | 0.5        |
| 1,2-Dichloropropane                                 | 08-MAY-07 18:59             | 0.123  | ND       | hd/w,             |          | 1             | 2.7        |
| 1,2-Dichloropropane                                 | 08-MAY-07 18:59             | 0.57   | ND       | ha/w <sub>3</sub> |          | 1 1           | 0.5        |
| Bromodichloromethane                                | 08-MAY-07 18:59             | 0.0779 | 0.23     | y\v dag           | J        |               | 2.3        |
| Bromodichloromethane                                | 08-MAY-07 18:59             | 0.52   | 1.5      | hd/w <sub>3</sub> | J        | 1             | 0.5        |
| Heptane                                             | 08-MAY-07 18:59             | 0.101  | 3.1      | v\v dag           | <u> </u> | 1             | 3.3        |
| Heptane                                             | 08-MAY-07 18:59             | 0.41   | 13.      | na/w <sub>3</sub> |          | 1             | 0.5        |
| cis-1,3-Dichloropropene                             | 08-MAY-07 18:59             | 0.106  | ND       | ppb v/v           |          | 1             | 2.0        |
| cis-1,3-Dichloropropene                             | 08-MAY-07 18:59             | 0.48   | ND       | hd/w <sub>3</sub> |          | 1             | 0.5        |
| 4-Methyl-2-Pentanone                                | 08-MAY-07 18:59             | 0.116  | ND       | v\v dag           |          | 1             | 2.3        |
| 4-Methyl-2-Pentanone                                | 08-MAY-07 18:59             | 0.48   | ND       | hd/w <sub>3</sub> |          | 1             | 0.5        |
| Toluene                                             | 08-MAY-07 18:59             | 0.115  | 3.1      | v/v dag           |          | $\frac{1}{1}$ | 2.0<br>0.5 |
| Toluene                                             | 08-MAY-07 18:59             | 0.43   | 12.      | µg/m³             |          | 1             | 1.9        |
| trans-1,3-Dichloropropene                           | 08-MAY-07 18:59             | 0.130  | ND       | ppb v/v           |          | 1             | 0.5        |
| trans-1,3-Dichloropropene                           | 08-MAY-07 18:59             | 0.59   | ND       | ug/m³             |          | 1             | 2.3 -      |
| 1,1,2-Trichloroethane                               | 08-MAY-07 18:59             | 0.0972 | ND       | ppb v/v           |          | 1             | 0.5        |
| 1,1,2-Trichloroethane                               | 08-MAY-07 18:59             | 0.53   | ND       | µg/m³             |          | 1             | 2.7        |
| Tetrachloroethene                                   | 08-MAY-07 18:59             | 0.0847 | ND       | ppb v/v           |          | 1             | 0.5        |
| Tetrachloroethene                                   | 08-MAY-07 18:59             | 0.57   | ND       | ug/m³             |          | 1             | 3.4        |
| 2-Hexanone                                          | 08-MAY-07 18:59             | 0.136  | ND       | ppb v/v           |          | 1             | 0.5        |
| 2-Hexanone                                          | 08-MAY-07 18:59             | 0.56   | ND       | µg/m³             |          | 1             | 2.0        |
| Dibromochloromethane                                | 08-MAY-07 18:59             | 0.0792 | ND       | ppb v/v           |          | 1             | 0.5        |
| Dibromochloromethane                                | 08-MAY-07 18:59             | 0.67   | ND       | µg/m³             |          | 1             | 4.2        |
| 1,2-Dibromoethane                                   | 08-MAY-07 18:59             | 0.119  | ND       | ppb v/v           |          | 1             | 0.5        |
| 1,2-Dibromoethane                                   | 08-MAY-07 18:59             | 0.91   | ND       | µg/m³             |          | 1             | 3.8        |
| Chlorobenzene                                       | 08-MAY-07 18:59             | 0.0882 | ND       | ppb v/v           |          | 1             | 0.5        |
| Chlorobenzene                                       | 08-MAY-07 18:59             | 0.41   | ND       | μg/m³             |          | 1             | 2.3        |
| Ethylbenzene                                        | 08-MAY-07 18:59             | 0.150  | 1.6      | ppb v/v           |          | 1             | 0.5        |
| Ethylbenzene                                        | 08-MAY-07 18:59             | 0.65   | 6.9      | µg/m³             |          | 1             | 2.2        |
| m,p-Xylene                                          | 08-MAY-07 18:59             | 0.213  | 2.1      | v/v dqq           |          | 1             | 1.0        |
| m,p-Xylene                                          | 08-MAY-07 18:59             | 0.92   | 9.0      | µg/m³             |          | 1             | 4.3        |
| o-Xylene                                            | 08-MAY-07 18:59             | 0.113  | 1.1      | v/v dqq           |          | 1             | 0.5        |
| o-Xylene<br>Styrene                                 | 08-MAY-07 18:59             | 0.49   | 4.7      | µg/m³             |          | 1             | 2.2        |
| Styrene                                             | 08-MAY-07 18:59             | 0.0748 | ND       | ppb v/v           |          | 1             | 0.5        |
| Bromoform                                           | 08-MAY-07 18:59             | 0.32   | ND       | μg/m³             |          | 1             | 2.1        |
| Bromoform                                           | 08-MAY-07 18:59             | 0.0884 | ND       | ppb v/v           |          | 1             | 0.5        |
|                                                     | 08-MAY-07 18:59             | 0.90   | ND       | μg/m³             |          | 1             | 5.1        |
| 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane | 08-MAY-07 18:59             | 0.108  | ND       | ppb v/v           |          | 1             | 0.5        |
| Benzyl Chloride                                     | 08-MAY-07 18:59             | 0.74   | ND       | µg/m³             |          | 1             | 3.4        |
| Derray Cittot TOG                                   | 08-MAY-07 18:59             | 0.136  | ND       | ppb v/v           |          | 1             | 0.5        |



Form RLIMS63A-V1.4 05140711182227

Page 17

### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 14-MAY-07 11:18 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02431 DCL Report Group..: 07E-0367-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Qual. | Dilution                                         | PQL |
|------------------------|------------------|--------|--------|---------|-------|--------------------------------------------------|-----|
| Benzyl Chloride        | 08-MAY-07 18:59  | 0.70   | ND     | µg/m³   |       | 1                                                | 2.6 |
| 4-Ethyl toluene        | 08-MAY-07 18:59  | 0.0983 | 0.29   | v/v dag | J     | 1 1                                              | 0.5 |
| 4-Ethyl toluene        | 08-MAY-07 18:59  | 0.48   | 1.4    | µg/m³   | J     |                                                  | 2.5 |
| 1,3,5-Trimethylbenzene | 08-MAY-07 18:59  | 0.112  | 0.44   | ppb v/v | J     | 1 1                                              | 0.5 |
| 1,3,5-Trimethylbenzene | 08-MAY-07 18:59  | 0.55   | 2.2    | µg/m³   | J     | 1 1                                              | 2.5 |
| 1,2,4-Trimethylbenzene | 08-MAY-07 18:59  | 0.117  | 1.7    | ppb v/v |       | 1 1                                              | 0.5 |
| 1,2,4-Trimethylbenzene | 08-MAY-07 18:59  | 0.58   | 8.5    | ug/m³   |       | 1 1                                              | 2.5 |
| 1,3-Dichlorobenzene    | 08-MAY-07 18:59  | 0.120  | ND     | v\v dag |       | 1 1                                              | 0.5 |
| 1,3-Dichlorobenzene    | 08-MAY-07 18:59  | 0.72   | ND     | ug/m³   |       | <del>                                     </del> | 3.0 |
| 1,4-Dichlorobenzene    | 08-MAY-07 18:59  | 0.0987 | ND     | v/v dqq |       | 1 1                                              | 0.5 |
| 1,4-Dichlorobenzene    | 08-MAY-07 18:59  | 0.59   | ND     | µg/m³   |       | 1 1                                              | 3.0 |
| 1,2-Dichlorobenzene    | 08-MAY-07 18:59  | 0.0851 | ND     | v\v dag |       | 1 1                                              | 0.5 |
| 1,2-Dichlorobenzene    | 08-MAY-07 18:59  | 0.51   | ND     | µg/m³   |       | 1 1                                              | 3.0 |
| 1,2,4-Trichlorobenzene | 08-MAY-07 18:59  | 0.115  | NDUJ   |         |       | 1                                                | 0.5 |
| 1,2,4-Trichlorobenzene | 08-MAY-07 18:59  | 0.85   | Tu du  | nd/m3   |       | 1                                                | 3.7 |
| Hexachlorobutadiene    | 08-MAY-07 18:59  | 0.119  | NDUT   | ppb v/v |       | 1                                                | 0.5 |
| Hexachlorobutadiene    | 08-MAY-07 18:59  | 1.3    | KD UZ  | nd/m3   |       | 1                                                | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
| Isobutane(4.53)             | 08-MAY-07 18:59  | 4.4    | ppb v/v | J     | 1        |
| Butane (4.80)               | 08-MAY-07 18:59  | 4.1    | v\v dag | J     | 1        |
| Ethanol (5.28)              | 08-MAY-07 18:59  | 2.8    | v\v dag | J     | 1        |
| Butane, 2-methyl(5.69)      | 08-MAY-07 18:59  | 7.3    | v\v dag | J     | 1        |
| Pentane(6.12)               | 08-MAY-07 18:59  | 3.5    | v\v dag | J     | 1        |
| Pentane, 2-methyl-(7.55)    | 08-MAY-07 18:59  | 3.3    | ppb v/v | J     | 1        |
| CYCLOHEXANE, METHYL-(11.36) | 08-MAY-07 18:59  | 3.9    | v\v dqq | J     | 1        |
| Octane (13.06)              | 08-MAY-07 18:59  | 3.2    | v\v dag | J     | 1        |
| Unknown fluorocarbon(13.77) | 08-MAY-07 18:59  | 20.    | v\v daa | J     | 1        |
| Nonane (15.13)              | 08-MAY-07 18:59  | 4.1    | v\v dag | J     | 1        |
| Decane(17.00)               | 08-MAY-07 18:59  | 5.3    | v\v dag | J     | 1        |
| C11 Hydrocarbon(17.84)      | 08-MAY-07 18:59  | 4.8    | v\v daa | J     | 1        |
| C11 Hydrocarbon(18.50)      | 08-MAY-07 18:59  | 3.5    | v\v dag | J     | 1        |
| Undecane(18.71)             | 08-MAY-07 18:59  | 5.6    | v\v dag | J     | 1        |



Form RLIMS63A-V1.4 05140711182227

Page 18

#### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 14-MAY-07 11:18

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: Not Provided

Sampling Site..... Behr VOC Plume PRP

Release Number....: 055729

Date Received.....: 07-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-24-SS DCL Sample Name...: 07E02432 DCL Report Group..: 07E-0367-01

Matrix..... AIR

Date Sampled....: 03-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis.....: ☒ As Received ☐ Dried

DCL Analysis Group: G074801F Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-W Column Type....: DB-1

> X Primary ☐ Confirmation

|                          | Date            |        |        |                   |          |                |            |
|--------------------------|-----------------|--------|--------|-------------------|----------|----------------|------------|
| Analyte                  | Analyzed        | MDL    | Result | Units             | Qual.    | Dilution       | POL        |
| Propene                  | 08-MAY-07 20:32 | 0.180  | ND     | ppb v/v           |          | 1              | 0.5        |
| Propene                  | 08-MAY-07 20:32 | 0.31   | ND     | ug/m³             |          | $\frac{1}{1}$  | 0.86       |
| Dichlorodifluoromethane  | 08-MAY-07 20:32 | 0.0669 | 0.60   | ppb v/v           |          | 1              | 0.5        |
| Dichlorodifluoromethane  | 08-MAY-07 20:32 | 0.33   | 2.9    | µg/m³             |          | 1              | 2.5        |
| Chloromethane            | 08-MAY-07 20:32 | 0.249  | ND     | ppb v/v           |          | 1 1            | 0.5        |
| Chloromethane            | 08-MAY-07 20:32 | 0.51   | ND     | ug/m³             |          | 1              | 1.0        |
| Freon 114                | 08-MAY-07 20:32 | 0.156  | ND     | ppb v/y           |          | 1              | 0.5        |
| Freon 114                | 08-MAY-07 20:32 | 1.1    | ND     | µg/m³             |          | 1              | 3.5        |
| Vinyl Chloride           | 08-MAY-07 20:32 | 0.301  | ND     | v/v dag           |          | 1              | 0.5        |
| Vinyl Chloride           | 08-MAY-07 20:32 | 0.77   | ND     | ug/m³             |          | 1              | 1.3        |
| 1,3-Butadiene            | 08-MAY-07 20:32 | 0.346  | ND     | v/v dag           |          | 1              | 0.5        |
| 1,3-Butadiene            | 08-MAY-07 20:32 | 0.77   | ND     | ug/m³             |          | 1              | 1.1        |
| Bromomethane             | 08-MAY-07 20:32 | 0.215  | ND     | v\v daa           | <u> </u> | 1              | 0.5        |
| Bromomethane             | 08-MAY-07 20:32 | 0.83   | ND     | na/w3             |          | 1              | 1.9        |
| Chloroethane             | 08-MAY-07 20:32 | 0.388  | ND     | v\v dag           |          | 1              | 0.5        |
| Chloroethane             | 08-MAY-07 20:32 | 1.0    | ND     | ug/m³             |          | 1              | 1.3 -      |
| Freon 11                 | 08-MAY-07 20:32 | 0.0921 | 0.28   | v\v daa           | J        | 1              | 0.5        |
| Freon 11                 | 08-MAY-07 20:32 | 0.52   | 1.6    | na/w3             | J        | 1              | 2.8        |
| cis-1,2-Dichloroethene   | 08-MAY-07 20:32 | 0.102  | ND     | ppb v/v           |          | 1              | 0.5        |
| cis-1,2-Dichloroethene   | 08-MAY-07 20:32 | 0.40   | ND     | na/w3             |          | 1              | 2.0        |
| Carbon Disulfide         | 08-MAY-07 20:32 | 0.111  | 0.17   | v\v dqq           | J        | 1              | 0.5        |
| Carbon Disulfide         | 08-MAY-07 20:32 | 0.35   | 0.53   | nd/w <sub>3</sub> | J        | 1              | 1.6        |
| Freon 113                | 08-MAY-07 20:32 | 0.0950 | ND     | v\v daa           |          | 1 1            | 0.5        |
| Freon 113                | 08-MAY-07 20:32 | 0.73   | ND     | nd/w3             |          | 1              | 3.8        |
| Acetone                  | 08-MAY-07 20:32 | 0.113  | 12.    | v\v dqq           | В        | 1 1            | 0.5        |
| Acetone                  | 08-MAY-07 20:32 | 0.27   | 28.    | na/w3             | В        | 1              | 1.2        |
| Methylene Chloride       | 08-MAY-07 20:32 | 0.168  | ND     | v\v daa           |          | 1              | 0.5        |
| Methylene Chloride       | 08-MAY-07 20:32 | 0.58   | ND     | nd/m3             |          | 1              | 1.7        |
| trans-1,2-Dichloroethene | 08-MAY-07 20:32 | 0.118  | ND     | v\v daa           |          | 1              | 0.5        |
| trans-1,2-Dichloroethene | 08-MAY-07 20:32 | 0.47   | ND     | na/w3             |          | 1 1            | 2.0        |
| 1,1-Dichloroethane       | 08-MAY-07 20:32 | 0.116  | ND     | v/v dag           |          | 1              | 0.5        |
| 1,1-Dichloroethane       | 08-MAY-07 20:32 | 0.47   | ND     | hd/w <sub>3</sub> |          | 1              | 2.0        |
| Methyl t-Butyl Ether     | 08-MAY-07 20:32 | 0.147  | ND     | v/v dag           |          | 1              | 0.5        |
| Methyl t-Butyl Ether     | 08-MAY-07 20:32 | 0.53   | ND     | na/w <sub>3</sub> |          | 1              | 1.8        |
| Vinyl Acetate            | 08-MAY-07 20:32 | 0.133  | ND     | pyb v/v           |          | $-\frac{1}{1}$ | 0.5        |
| Vinyl Acetate            | 08-MAY-07 20:32 | 0.47   | ND     | ha/w <sub>3</sub> |          | 1              | 1.8        |
| 1,1-Dichloroethene       | 08-MAY-07 20:32 | 0.109  | ND     | pg/m³             |          | 1              |            |
| 1,1-Dichloroethene       | 08-MAY-07 20:32 | 0.43   | ND     | hd/w <sub>3</sub> |          |                | 0.5        |
| 2-Butanone               | 08-MAY-07 20:32 | 0.182  | 0.83   | ν/ν dqq           |          | $\frac{1}{1}$  | 2.0        |
| 2-Butanone               | 08-MAY-07 20:32 | 0.54   | 2.4    | hd/w <sub>3</sub> |          |                | 0.5        |
| Ethyl Acetate            | 08-MAY-07 20:32 | 0.273  | ND ND  | v\v daa           |          | $-\frac{1}{1}$ | 1.5<br>0.5 |



Form RLIMS63A-V1.4 05140711182227

Page 19

# G074601B

#### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 14-MAY-07 11:18
Client Name....: Weston Solutions, Inc.

DCL Sample Name...: 07E02432
DCL Report Group..: 07E-0367-01

| Ethyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                                 | Date<br>Analyzed | MDL         | Result      | Units       | Qual.       | Dilution                                         | PQL   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|-------------|-------------|-------------|-------------|--------------------------------------------------|-------|
| Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ethvl Acetate                           |                  | 0.98        |             | <del></del> | guar.       | -                                                |       |
| Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                  |             |             |             |             |                                                  |       |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                  |             |             |             |             |                                                  |       |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                  |             |             |             |             | -                                                |       |
| 1.1.1-Trichlorosethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                  |             |             |             |             |                                                  |       |
| 1.1.1.Trichlorcethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                  |             |             |             |             | <del>                                     </del> |       |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                  | <del></del> |             |             |             |                                                  |       |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                  |             |             |             |             |                                                  |       |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                  |             |             |             |             |                                                  |       |
| Benzone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                  |             |             |             | <del></del> |                                                  |       |
| Tetrahydrofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |             |             |             |             |                                                  |       |
| Tetrahydrofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |             | <del></del> |             | U           |                                                  |       |
| 1,2-Pichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  |             |             |             |             |                                                  |       |
| 1.2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  |             |             |             |             | <del></del>                                      |       |
| Cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                  |             |             |             |             |                                                  |       |
| Cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                  |             |             |             |             |                                                  |       |
| Trichlorosthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ** ** · · · · · · · · · · · · · · · · · |                  |             |             |             |             |                                                  |       |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |             |             |             |             |                                                  |       |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                  |             |             |             | <b>.</b>    |                                                  |       |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                  |             |             |             |             |                                                  |       |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                  |             |             |             |             |                                                  |       |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                  |             |             |             |             |                                                  |       |
| Heptane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                  |             |             |             |             |                                                  |       |
| Hentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                  |             |             |             | J           |                                                  |       |
| cis-1, 3-Dichloropropene         08-MAY-07 20:32         0.106         ND         ppb v/v         1         2.0           cis-1, 3-Dichloropropene         08-MAY-07 20:32         0.166         ND         ppb v/v         1         0.5           4-Methyl-2-Pentanone         08-MAY-07 20:32         0.116         ND         ppb v/v         1         0.5           4-Methyl-2-Pentanone         08-MAY-07 20:32         0.116         ND         ppb v/v         1         0.5           4-Methyl-2-Pentanone         08-MAY-07 20:32         0.115         ND         ppb v/v         1         0.5           4-Methyl-2-Pentanone         08-MAY-07 20:32         0.115         1.7         ppb v/v         1         0.5           Toluene         08-MAY-07 20:32         0.15         1.7         ppb v/v         1         0.5           trans-1,3-Dichloropropene         08-MAY-07 20:32         0.150         ND         ppb v/v         1         0.5           trans-1,3-Dichloropropene         08-MAY-07 20:32         0.59         ND         ppb v/v         1         0.5           trans-1,3-Dichloropropene         08-MAY-07 20:32         0.59         ND         ppb v/v         1         0.5           trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                  |             |             |             |             |                                                  |       |
| cis-1,3-Dichloropropene         08-MAY-07 20:32         0.48         ND         µg/m³         1         2.3           4-Methyl-2-Pentanone         08-MAY-07 20:32         0.116         ND         ppb v/v         1         0.5           4-Methyl-2-Pentanone         08-MAY-07 20:32         0.48         ND         µg/m³         1         2.0           Toluene         08-MAY-07 20:32         0.115         1.7         ppb v/v         1         0.5           Toluene         08-MAY-07 20:32         0.43         6.2         µg/m³         1         0.5           trans-1,3-Dichloropropene         08-MAY-07 20:32         0.43         6.2         µg/m³         1         0.5           trans-1,3-Dichloropropene         08-MAY-07 20:32         0.59         ND         µg/m³         1         2.3           trans-1         08-MAY-07 20:32         0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                  |             |             |             |             |                                                  |       |
| 4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                  |             |             |             |             |                                                  |       |
| 4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                  |             |             |             |             |                                                  |       |
| Toluene 08-MAY-07 20:32 0.115 1.7 ppb v/v 1 0.5 Toluene 08-MAY-07 20:32 0.135 1.7 ppb v/v 1 0.5 Toluene 08-MAY-07 20:32 0.130 ND ppb v/v 1 1 0.5 trans-1,3-Dichloropropene 08-MAY-07 20:32 0.130 ND ppb v/v 1 0.5 trans-1,3-Dichloropropene 08-MAY-07 20:32 0.59 ND µg/m³ 1 2.3 - 1,1,2-Trichloroethane 08-MAY-07 20:32 0.59 ND µg/m³ 1 2.3 - 1,1,2-Trichloroethane 08-MAY-07 20:32 0.59 ND µg/m³ 1 2.7 Tetrachloroethane 08-MAY-07 20:32 0.53 ND µg/m³ 1 2.7 Tetrachloroethane 08-MAY-07 20:32 0.53 ND µg/m³ 1 2.7 Tetrachloroethane 08-MAY-07 20:32 0.53 ND µg/m³ 1 2.7 Tetrachloroethane 08-MAY-07 20:32 0.55 ND µg/m³ 1 2.7 Tetrachloroethane 08-MAY-07 20:32 0.56 ND µg/m³ 1 2.7 Tetrachloroethane 08-MAY-07 20:32 0.56 ND µg/m³ 1 2.5 Dibromochloromethane 08-MAY-07 20:32 0.56 ND µg/m³ 1 2.0 Dibromochloromethane 08-MAY-07 20:32 0.56 ND µg/m³ 1 2.0 Dibromochloromethane 08-MAY-07 20:32 0.67 ND µg/m³ 1 2.0 Dibromochloromethane 08-MAY-07 20:32 0.67 ND µg/m³ 1 4.2 Dibromochloromethane 08-MAY-07 20:32 0.67 ND µg/m³ 1 2.3 Ethylbenzene 08-MAY-07 20:32 0.99 ND µg/m³ 1 2.3 Ethylbenzene 08-MAY-07 20:32 0.99 ND µg/m³ 1 2.3 Ethylbenzene 08-MAY-07 20:32 0.41 ND µg/m³ 1 2.3 Ethylbenzene 08-MAY-07 20:32 0.150 0.71 ppb v/v 1 0.5 Ethylbenzene 08-MAY-07 20:32 0.150 0.71 ppb v/v 1 0.5 Ethylbenzene 08-MAY-07 20:32 0.150 0.71 ppb v/v 1 0.5 Ethylbenzene 08-MAY-07 20:32 0.150 0.71 ppb v/v 1 0.5 Ethylbenzene 08-MAY-07 20:32 0.44 ND ppb v/v 1 0.5 Exyrene 08-MAY-07 20:32 0.49 2.0 ND µg/m³ 1 2.2 Syrene 08-MAY-07 20:32 0.49 2.0 ND µg/m³ 1 2.2 Syrene 08-MAY-07 20:32 0.084 ND ppb v/v 1 0.5 Exyrene 08-MAY-07 20:32 0.084 ND ppb v/v 1 0.5 Exyrene 08-MAY-07 20:32 0.084 ND ppb v/v 1 0.5 Exyrene 08-MAY-07 20:32 0.088 ND ppb v/v 1 0.5 Exyrene 08-MAY-0 |                                         |                  |             |             |             |             |                                                  |       |
| Toluene 08-MAY-07 20:32 0.43 6.2 \( \frac{\text{lag}}{\text{mars}} \) 1 1.9 \( \frac{\text{sos}}{\text{sos}} \) 1 1.2 3 \( \frac{\text{sos}}{\text{sos}} \) 1 1.2 3 \( \frac{\text{sos}}{\text{sos}} \) 1 1.2 -Trichloroethane \( \frac{\text{sos}}{\text{sos}} \) 1.4 2-Trichloroethane \( \frac{\text{sos}}{\text{sos}} \) 1.3 \( \frac{\text{sos} |                                         |                  |             |             |             |             |                                                  |       |
| trans-1,3-Dichloropropene         08-MAY-07 20:32 0.130 ND ppb v/v         1 0.5           trans-1,3-Dichloropropene         08-MAY-07 20:32 0.59 ND ug/m³ 1 2.3 -           1,1,2-Trichloroethane         08-MAY-07 20:32 0.0972 ND ppb v/v         1 0.5           1,1,2-Trichloroethane         08-MAY-07 20:32 0.53 ND µg/m³ 1 2.7           Tetrachloroethene         08-MAY-07 20:32 0.0847 0.19 ppb v/v J 1 0.5           Tetrachloroethene         08-MAY-07 20:32 0.57 ND µg/m³ J 1 0.5           Tetrachloroethene         08-MAY-07 20:32 0.57 ND µg/m³ J 1 0.5           2-Hexanone         08-MAY-07 20:32 0.56 ND µg/m³ J 1 2.0           2-Hexanone         08-MAY-07 20:32 0.56 ND µg/m³ 1 2.0           Dibromochloromethane         08-MAY-07 20:32 0.0792 ND ppb v/v 1 0.5           Dibromochloromethane         08-MAY-07 20:32 0.0792 ND pbb v/v 1 0.5           1,2-Dibromoethane         08-MAY-07 20:32 0.119 ND µg/m³ 1 4.2           1,2-Dibromoethane         08-MAY-07 20:32 0.19 ND µg/m³ 1 0.5           1,2-Dibromoethane         08-MAY-07 20:32 0.19 ND µg/m³ 1 0.5           1,2-Dibromoethane         08-MAY-07 20:32 0.19 ND µg/m³ 1 0.5           1,2-Dibromoethane         08-MAY-07 20:32 0.91 ND µg/m³ 1 0.5           Chlorobenzene         08-MAY-07 20:32 0.91 ND µg/m³ 1 0.5           Chlorobenzene         08-MAY-07 20:32 0.91 ND µg/m³ 1 0.5           Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 08-MAY-07 20:32  |             |             |             |             |                                                  |       |
| trans-1,3-Dichloropropene         08-MAY-07 20:32 0.59 ND µg/m³         ND µg/m³         1 2.3 - 1.1,2-Trichloroethane         08-MAY-07 20:32 0.972 ND ppb v/v         1 0.5           1,1,2-Trichloroethane         08-MAY-07 20:32 0.53 ND µg/m³         1 0.5         1 0.5           Tetrachloroethene         08-MAY-07 20:32 0.0847 0.19 ppb v/v J 1 0.5         1 0.5           Tetrachloroethene         08-MAY-07 20:32 0.57 1.3 µg/m³         1 0.5           Z-Hexanone         08-MAY-07 20:32 0.56 ND µg/m³         1 2.0           2-Hexanone         08-MAY-07 20:32 0.56 ND µg/m³         1 2.0           Dibromochloromethane         08-MAY-07 20:32 0.56 ND µg/m³         1 2.0           Dibromochloromethane         08-MAY-07 20:32 0.67 ND µg/m³         1 2.0           1,2-Dibromoethane         08-MAY-07 20:32 0.119 ND µg/m³         1 0.5           1,2-Dibromoethane         08-MAY-07 20:32 0.150 ND µg/m³         1 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                  |             |             |             |             |                                                  |       |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | trans 1 3 Dighlamanana                  |                  |             |             |             |             |                                                  |       |
| 1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 2 Maishlanash                       |                  |             |             |             |             |                                                  | 2.3 - |
| Tetrachloroethene 08-MAY-07 20:32 0.0847 0.19 ppb v/v J 1 0.5 Tetrachloroethene 08-MAY-07 20:32 0.57 1.3 µg/m³ J 1 3.4 2-Hexanone 08-MAY-07 20:32 0.136 ND ppb v/v 1 0.5 2-Hexanone 08-MAY-07 20:32 0.136 ND ppb v/v 1 0.5 2-Hexanone 08-MAY-07 20:32 0.56 ND µg/m³ 1 2.0 Dibromochloromethane 08-MAY-07 20:32 0.0792 ND ppb v/v 1 0.5 Dibromochloromethane 08-MAY-07 20:32 0.0792 ND ppb v/v 1 0.5 Dibromochloromethane 08-MAY-07 20:32 0.119 ND µg/m³ 1 4.2 1,2-Dibromoethane 08-MAY-07 20:32 0.119 ND µg/m³ 1 3.8 Chlorobenzene 08-MAY-07 20:32 0.91 ND µg/m³ 1 3.8 Chlorobenzene 08-MAY-07 20:32 0.91 ND µg/m³ 1 3.8 Chlorobenzene 08-MAY-07 20:32 0.0882 ND ppb v/v 1 0.5 Chlorobenzene 08-MAY-07 20:32 0.150 0.71 ppb v/v 1 0.5 Ethylbenzene 08-MAY-07 20:32 0.65 3.1 µg/m³ 1 2.3 Ethylbenzene 08-MAY-07 20:32 0.65 3.1 µg/m³ 1 2.2 Em,p-Xylene 08-MAY-07 20:32 0.213 1.0 ppb v/v 1 0.5 En,p-Xylene 08-MAY-07 20:32 0.213 1.0 ppb v/v 1 1.0 m,p-Xylene 08-MAY-07 20:32 0.92 4.4 µg/m³ 1 2.2 En,p-Xylene 08-MAY-07 20:32 0.92 4.4 µg/m³ 1 2.2 Styrene 08-MAY-07 20:32 0.49 2.0 µg/m³ J 2.2 Styrene 08-MAY-07 20:32 0.49 2.0 µg/m³ J 2.2 Styrene 08-MAY-07 20:32 0.0748 ND ppb v/v J 0.5 Styrene 08-MAY-07 20:32 0.0884 ND ppb v/v J 0.5 Styrene 08-MAY-07 20:32 0.0884 ND ppb v/v J 0.5 Bromoform 08-MAY-07 20:32 0.0884 ND ppb v/v J 0.5 Bromoform 08-MAY-07 20:32 0.090 ND µg/m³ J 2.1 Bromoform 08-MAY-07 20:32 0.090 ND µg/m³ 1 5.1 Styrent 08-MAY-07 20:32 0.090 ND µg/m³ 1 5.1 Styrent 08-MAY-07 20:32 0.090 ND µg/m³ 1 5.1 Styrent 08-MAY-07 20:32 0.090 ND µg/m³ 1 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                  |             |             |             |             |                                                  |       |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                  |             |             |             |             |                                                  | 2.7   |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                  |             |             |             |             |                                                  | 0.5   |
| 2-Hexanone   08-MAY-07   20:32   0.56   ND   μg/m³   1   2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                  |             |             |             | J           |                                                  | 3.4   |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                  |             |             |             |             |                                                  |       |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                  |             |             |             |             |                                                  |       |
| 1,2-Dibromoethane       08-MAY-07 20:32       0.119       ND       ppb v/v       1       0.5         1,2-Dibromoethane       08-MAY-07 20:32       0.91       ND       µg/m³       1       3.8         Chlorobenzene       08-MAY-07 20:32       0.0882       ND       ppb v/v       1       0.5         Chlorobenzene       08-MAY-07 20:32       0.41       ND       µg/m³       1       2.3         Ethylbenzene       08-MAY-07 20:32       0.150       0.71       ppb v/v       1       0.5         Ethylbenzene       08-MAY-07 20:32       0.65       3.1       µg/m³       1       2.2         m,p-Xylene       08-MAY-07 20:32       0.213       1.0       ppb v/v       1       1.0         m,p-Xylene       08-MAY-07 20:32       0.113       0.45       ppb v/v       1       1.0         o-Xylene       08-MAY-07 20:32       0.113       0.45       ppb v/v       J       1       0.5         o-Xylene       08-MAY-07 20:32       0.113       0.45       ppb v/v       J       1       0.5         o-Xylene       08-MAY-07 20:32       0.94       2.0       µg/m³       J       1       0.5         Styrene       08-MAY-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                  |             |             |             |             |                                                  |       |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                  |             |             |             |             |                                                  | 4.2   |
| Chlorobenzene         08-MAY-07 20:32 0.0882 ND ppb v/v         ND ppb v/v         1 0.5           Chlorobenzene         08-MAY-07 20:32 0.41 ND µg/m³ 1 2.3           Ethylbenzene         08-MAY-07 20:32 0.150 0.71 ppb v/v         1 0.5           Ethylbenzene         08-MAY-07 20:32 0.65 3.1 µg/m³ 1 2.2           m,p-Xylene         08-MAY-07 20:32 0.213 1.0 ppb v/v         1 1.0           m,p-Xylene         08-MAY-07 20:32 0.92 4.4 µg/m³ 1 4.3           o-Xylene         08-MAY-07 20:32 0.113 0.45 ppb v/v J 1 0.5           o-Xylene         08-MAY-07 20:32 0.113 0.45 ppb v/v J 1 0.5           o-Xylene         08-MAY-07 20:32 0.49 2.0 µg/m³ J 1 2.2           Styrene         08-MAY-07 20:32 0.0748 ND ppb v/v J 1 0.5           Styrene         08-MAY-07 20:32 0.32 ND µg/m³ J 2.1           Bromoform         08-MAY-07 20:32 0.0884 ND ppb v/v J 1 0.5           Bromoform         08-MAY-07 20:32 0.0884 ND ppb v/v J 1 0.5           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32 0.108 ND ppb v/v J 1 0.5           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32 0.108 ND ppb v/v J 1 0.5           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32 0.108 ND ppb v/v J 1 0.5           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32 0.108 ND ppb v/v J 1 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |             |             |             |             |                                                  | 0.5   |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                  |             |             |             |             |                                                  |       |
| Ethylbenzene         08-MAY-07 20:32         0.150         0.71         ppb v/v         1         0.5           Ethylbenzene         08-MAY-07 20:32         0.65         3.1         µg/m³         1         2.2           m,p-Xylene         08-MAY-07 20:32         0.213         1.0         ppb v/v         1         1.0           m,p-Xylene         08-MAY-07 20:32         0.92         4.4         µg/m³         1         4.3           o-Xylene         08-MAY-07 20:32         0.113         0.45         ppb v/v         J         1         0.5           o-Xylene         08-MAY-07 20:32         0.49         2.0         µg/m³         J         1         2.2           Styrene         08-MAY-07 20:32         0.0748         ND         ppb v/v         1         0.5           Styrene         08-MAY-07 20:32         0.32         ND         µg/m³         1         2.1           Bromoform         08-MAY-07 20:32         0.0884         ND         ppb v/v         1         0.5           Bromoform         08-MAY-07 20:32         0.90         ND         µg/m³         1         5.1           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32         0.108         ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                  |             |             |             |             |                                                  |       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                  |             |             |             |             |                                                  |       |
| Ethylbenzene   08-MAY-07 20:32   0.65   3.1   µg/m³   1   2.2   m,p-Xylene   08-MAY-07 20:32   0.213   1.0   ppb v/v   1   1.0   m,p-Xylene   08-MAY-07 20:32   0.92   4.4   µg/m³   1   4.3   0.45   ppb v/v   J   1   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5   0.5    |                                         |                  |             |             |             |             | 11                                               | 0.5   |
| m,p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                  |             |             |             |             | 1                                                |       |
| o-Xylene         08-MAY-07 20:32         0.113         0.45         ppb v/v         J         1         0.5           o-Xylene         08-MAY-07 20:32         0.49         2.0         µg/m³         J         1         2.2           Styrene         08-MAY-07 20:32         0.0748         ND         ppb v/v         1         0.5           Styrene         08-MAY-07 20:32         0.32         ND         µg/m³         1         2.1           Bromoform         08-MAY-07 20:32         0.0884         ND         ppb v/v         1         0.5           Bromoform         08-MAY-07 20:32         0.90         ND         µg/m³         1         5.1           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32         0.108         ND         ppb v/v         1         0.5           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32         0.74         ND         µg/m³         1         3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                  |             |             |             |             | 1                                                | 1.0   |
| o-Xylene         08-MAY-07 20:32         0.49         2.0         ug/m³         J         1         2.2           Styrene         08-MAY-07 20:32         0.0748         ND         ppb v/v         1         0.5           Styrene         08-MAY-07 20:32         0.32         ND         ug/m³         1         2.1           Bromoform         08-MAY-07 20:32         0.0884         ND         ppb v/v         1         0.5           Bromoform         08-MAY-07 20:32         0.90         ND         ug/m³         1         5.1           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32         0.108         ND         ppb v/v         1         0.5           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32         0.74         ND         ug/m³         1         3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                  |             |             |             |             | 1                                                | 4.3   |
| Styrene         08-MAY-07 20:32 0.0748 ND ppb v/v         1 0.5           Styrene         08-MAY-07 20:32 0.32 ND µg/m³ 1 2.1           Bromoform         08-MAY-07 20:32 0.0884 ND ppb v/v         1 0.5           Bromoform         08-MAY-07 20:32 0.90 ND µg/m³ 1 5.1           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32 0.108 ND ppb v/v         1 0.5           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32 0.108 ND ppb v/v         1 0.5           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32 0.108 ND ppb v/v         1 0.5           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32 0.74 ND µg/m³ 1 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                  |             |             |             | J           |                                                  | 0.5   |
| Styrene         08-MAY-07 20:32 0.0748 ND ppb v/v         1 0.5           Styrene         08-MAY-07 20:32 0.32 ND µg/m³ 1 2.1           Bromoform         08-MAY-07 20:32 0.0884 ND ppb v/v         1 0.5           Bromoform         08-MAY-07 20:32 0.90 ND µg/m³ 1 5.1           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32 0.108 ND ppb v/v         1 0.5           1,1,2,2-Tetrachloroethane         08-MAY-07 20:32 0.74 ND µg/m³ 1 3.4           1,0,5         1 0.5           1,0,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0         1 0.5           1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                  |             |             |             | J           | 1                                                | 2.2   |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                  |             |             |             |             | 1                                                |       |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                  |             | ND          |             |             | 1                                                |       |
| Bromoform 08-MAY-07 20:32 0.90 ND µg/m³ 1 5.1 1,1,2,2-Tetrachloroethane 08-MAY-07 20:32 0.108 ND ppb v/v 1 0.5 1,1,2,2-Tetrachloroethane 08-MAY-07 20:32 0.74 ND µg/m³ 1 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                  |             | ND          |             |             | 1                                                |       |
| 1,1,2,2-Tetrachloroethane 08-MAY-07 20:32 0.108 ND ppb v/v 1 0.5<br>1,1,2,2-Tetrachloroethane 08-MAY-07 20:32 0.74 ND µg/m³ 1 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 08-MAY-07 20:32  |             | ND          | µg/m³       |             | 1                                                |       |
| 1,1,2,2-Tetrachloroethane 08-MAY-07 20:32 0.74 ND µg/m³ 1 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                  |             | ND          | ppb v/v     |             | 1                                                |       |
| Rengy Chlorido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                  |             | ND          | μg/m³       |             |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzyl Chloride                         | 08-MAY-07 20:32  | 0.136       | ND          | ppb v/v     |             |                                                  | 0.5   |



Form RLIMS63A-V1.4 05140711182227

Page 20



3.7

0.5

5.3

#### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 14-MAY-07 11:18 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02432 DCL Report Group..: 07E-0367-01

Analytical Results

1,2,4-Trichlorobenzene

Hexachlorobutadiene

Hexachlorobutadiene

#### Date Analyte Analyzed MDL Result Units Qual. Dilution PQL Benzyl Chloride 08-MAY-07 20:32 0.70 ND μg/m³ 2.6 4-Ethyl toluene 08-MAY-07 20:32 0.0983 ND ppb v/v 0.5 4-Ethyl toluene 08-MAY-07 20:32 0.48 NDµg/m³ 2.5 1,3,5-Trimethylbenzene 08-MAY-07 20:32 0.14 ppb v/v 1 0.5 1,3,5-Trimethylbenzene 08-MAY-07 20:32 0.55 0.67 μg/m³ 2.5 08-MAY-07 20:32 1,2,4-Trimethylbenzene 0.117 0.55 ppb v/v 0.5 1,2,4-Trimethylbenzene 08-MAY-07 20:32 0.58 2.7 μg/m³ 1 2.5 08-MAY-07 20:32 08-MAY-07 20:32 1,3-Dichlorobenzene 0.120 ND ppb v/v 0.5 1,3-Dichlorobenzene ND μg/m³ 3.0 08-MAY-07 20:32 1,4-Dichlorobenzene 0.0987 ND ppb v/v 0.5 1,4-Dichlorobenzene 08-MAY-07 20:32 0.59 ND μg/m³ 3.0 08-MAY-07 20:32 1,2-Dichlorobenzene 0.0851 ND ppb v/v 0.5 1,2-Dichlorobenzene 08-MAY-07 20:32 0.51 ND μg/m³ 3.0 08-MAY-07 20:32 1,2,4-Trichlorobenzene 0.115 ND ()J ppb v/v 0.5

0.85

0.119

#### Tentatively Identified Compound Results

| Analyte(Retention Time) | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|-------------------------|------------------|--------|---------|-------|----------|
| Isobutane(4.54)         | 08-MAY-07 20:32  | 3.9    | v\v dag | J     | 1        |
| Butane(4.81)            | 08-MAY-07 20:32  | 17.    | v\v dag | J     | 1 1      |
| Ethanol(5.33)           | 08-MAY-07 20:32  | 2.2    | ppb v/v | J     | 1        |
| Isopropyl Alcohol(5.92) | 08-MAY-07 20:32  | 10.    | ppb v/v | J     | 1 1      |

08-MAY-07 20:32

08-MAY-07 20:32

08-MAY-07 20:32

ND UJ

ND UT

μg/m³

ppb v/v

µg/m³



## Form RLIMS63A-V1.4 05140711182227

Page 21



#### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 14-MAY-07 11:18

Client Name....: Weston Solutions, Inc.

Client Ref Number . . . : Not Provided

Sampling Site..... Behr VOC Plume PRP

Release Number....: 055729

Date Received.....: 07-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared...... Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL Net Weight/Volume...: Not Required

Client Sample Name: EPA-25-SS DCL Sample Name...: 07E02433 DCL Report Group..: 07E-0367-01

Matrix.....AIR

Date Sampled....: 03-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....:

☒ As Received ☐ Dried

DCL Analysis Group: G074801F Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-W Column Type.....: DB-1

> X Primary ☐ Confirmation

#### Analytical Results

| Analyte                  | Date<br>Analyzed | MDL    | Result | Units             | Qual.         | Dilution                                       | DOI        |
|--------------------------|------------------|--------|--------|-------------------|---------------|------------------------------------------------|------------|
| Propene                  | 10-MAY-07 08:19  | 0.180  | ND     | ppb v/v           | Quar.         | 1                                              | PQL        |
| Propene                  | 10-MAY-07 08:19  | 0.31   | ND     | hd/w <sub>3</sub> | <del> </del>  | $\frac{1}{1}$                                  | 0.5        |
| Dichlorodifluoromethane  | 10-MAY-07 08:19  | 0.0669 | 0.66 7 | v/v dag           |               | $\frac{1}{1}$                                  | 0.86       |
| Dichlorodifluoromethane  | 10-MAY-07 08:19  | 0.33   | 3.3 7  | na/w <sub>3</sub> |               | 1                                              | 0.5        |
| Chloromethane            | 10-MAY-07 08:19  | 0.249  | ND     | ppb v/v           |               | 1                                              | 2.5        |
| Chloromethane            | 10-MAY-07 08:19  | 0.51   | ND     | hd/w <sub>3</sub> |               | $\frac{1}{1}$                                  | 0.5        |
| Freon 114                | 10-MAY-07 08:19  | 0.156  | ND     | ν/ν dag           |               |                                                | 1.0        |
| Freon 114                | 10-MAY-07 08:19  | 1.1    | ND     | ug/m³             |               | 1 1                                            | 0.5<br>3.5 |
| Vinyl Chloride           | 10-MAY-07 08:19  | 0.301  | ND     | ppb v/v           |               | 1                                              |            |
| Vinyl Chloride           | 10-MAY-07 08:19  | 0.77   | ND     | nd/m3             |               | 1                                              | 0.5        |
| 1,3-Butadiene            | 10-MAY-07 08:19  | 0.346  | ND     | ppb v/v           |               | 1                                              | 1.3        |
| 1,3-Butadiene            | 10-MAY-07 08:19  | 0.77   | ND     | ug/m³             |               | $\frac{1}{1}$                                  | 0.5        |
| Bromomethane             | 10-MAY-07 08:19  | 0.215  | ND     | ppb v/v           |               | $\frac{1}{1}$                                  | 1.1        |
| Bromomethane             | 10-MAY-07 08:19  | 0.83   | ND     | ha/w <sub>3</sub> |               |                                                | 0.5        |
| Chloroethane             | 10-MAY-07 08:19  | 0.388  | ND     | y\v dqq           |               | 1                                              | 1.9        |
| Chloroethane             | 10-MAY-07 08:19  | 1.0    | ND     | nd/w <sub>3</sub> |               | 1 1                                            | 0.5        |
| Freon 11                 | 10-MAY-07 08:19  | 0.0921 | 0.27   | ppb v/v           | <del>-</del>  | 1                                              | 1.3 -      |
| Freon 11                 | 10-MAY-07 08:19  | 0.52   | 1.5    | nd/w <sub>3</sub> | J<br>J        | $\begin{array}{c c} 1 \\ \hline 1 \end{array}$ | 0.5        |
| cis-1,2-Dichloroethene   | 10-MAY-07 08:19  | 0.102  | ND     | ppb v/v           | U             |                                                | 2.8        |
| cis-1,2-Dichloroethene   | 10-MAY-07 08:19  | 0.40   | ND     | na/w3             |               | 1                                              | 0.5        |
| Carbon Disulfide         | 10-MAY-07 08:19  | 0.111  | 0.37   | v\v dag           | J             | 1                                              | 2.0        |
| Carbon Disulfide         | 10-MAY-07 08:19  | 0.35   | 1.2    | hd/w <sub>3</sub> | J             | $\frac{1}{1}$                                  | 0.5        |
| Freon 113                | 10-MAY-07 08:19  | 0.0950 | ND     | v/v dag           |               | 1                                              | 1.6        |
| Freon 113                | 10-MAY-07 08:19  | 0.73   | ND     | nd/w <sub>3</sub> |               |                                                | 0.5        |
| Acetone                  | 10-MAY-07 08:19  | 0.113  | 18.    | v\v daa           | В             | 1                                              | 3.8        |
| Acetone                  | 10-MAY-07 08:19  | 0.27   | 42.    | nd/w <sub>3</sub> | В             | 1 1                                            | 0.5        |
| Methylene Chloride       | 10-MAY-07 08:19  | 0.168  | ND ND  | ppb v/v           | <del>  </del> |                                                | 1.2        |
| Methylene Chloride       | 10-MAY-07 08:19  | 0.58   | ND     | nd/m3             |               | 1                                              | 0.5        |
| trans-1,2-Dichloroethene | 10-MAY-07 08:19  | 0.118  | ND     | v\v dqq           |               | $\frac{1}{1}$                                  | 1.7        |
| trans-1,2-Dichloroethene | 10-MAY-07 08:19  | 0.47   | ND     | na/w <sub>3</sub> |               |                                                | 0.5        |
| 1,1-Dichloroethane       | 10-MAY-07 08:19  | 0.116  | ND     | v/v dag           |               | 1 +                                            | 2.0        |
| 1,1-Dichloroethane       | 10-MAY-07 08:19  | 0.47   | ND     | hd/w <sub>3</sub> |               | 1                                              | 0.5        |
| Methyl t-Butyl Ether     | 10-MAY-07 08:19  | 0.147  | ND     | ppb v/v           |               | 1                                              | 2.0        |
| Methyl t-Butyl Ether     | 10-MAY-07 08:19  | 0.53   | ND     | hd/w <sub>3</sub> |               | 1                                              | 0.5        |
| Vinyl Acetate            | 10-MAY-07 08:19  | 0.133  | ND     | v\v dag           |               | 1                                              | 1.8        |
| Vinyl Acetate            | 10-MAY-07 08:19  | 0.47   | ND     | hd/w <sub>3</sub> |               | 1                                              | 0.5        |
| 1,1-Dichloroethene       | 10-MAY-07 08:19  | 0.109  | ND     | ppb v/v           |               | 1                                              | 1.8        |
| 1,1-Dichloroethene       | 10-MAY-07 08:19  | 0.43   | ND     |                   |               | 1                                              | 0.5        |
| 2-Butanone               | 10-MAY-07 08:19  | 0.43   | 1.5    | ng/m³             |               | 1                                              | 2.0        |
| 2-Butanone               | 10-MAY-07 08:19  | 0.54   | 4.4    | ppb v/v           |               | 1                                              | 0.5        |
| Ethyl Acetate            | 10-MAY-07 08:19  | 0.34   | ND ND  | μg/m³<br>ppb v/v  |               | 1                                              | 1.5<br>0.5 |

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com 6/5/07 E-mail: lab@datachem com



Form RLIMS63A-V1.4 05140711182227

Page 22



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 14-MAY-07 11:18 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02433 DCL Report Group..: 07E-0367-01

#### Analytical Results

| Analyte                   | Date<br>Analyzed | MDL    | Result | IIn:+-            | 0           | D: 1          |       |
|---------------------------|------------------|--------|--------|-------------------|-------------|---------------|-------|
| Ethyl Acetate             | 10-MAY-07 08:19  |        |        | Units             | Qual.       | Dilution      | PQL   |
| Hexane                    | 10-MAY-07 08:19  | 0.121  | 3.3    | µg/m³             | <b> </b>    | 1 1           | 1.8   |
| Hexane                    | 10-MAY-07 08:19  | 0.121  | 12.    | v/v dqq           | ļ           | 1             | 0.5   |
| Chloroform                | 10-MAY-07 08:19  | 0.115  |        | µg/m³             | ļ           | 1 1           | 1.8   |
| Chloroform                | 10-MAY-07 08:19  | 0.115  | ND     | ppb v/v           | <u> </u>    | 1 1           | 0.5   |
| 1,1,1-Trichloroethane     | 10-MAY-07 08:19  |        | ND     | nd/w3             |             | 1             | 2.4   |
| 1,1,1-Trichloroethane     | 10-MAY-07 08:19  | 0.0725 | ND UJ  |                   |             | 1 1           | 0.5   |
| Carbon Tetrachloride      | 10-MAY-07 08:19  | 0.40   | NDU    |                   |             | 1             | 2.7   |
| Carbon Tetrachloride      | 10-MAY-07 08:19  | 0.0657 | ND VJ  |                   | <u> </u>    | 1             | 0.5   |
| Benzene                   | 10-MAY-07 08:19  | 0.41   | ND U   |                   |             | 1 1           | 3.1   |
| Benzene                   | 10-MAY-07 08:19  | 0.102  | 1.5    | ppb v/v           |             | 1             | 0.5   |
| Tetrahydrofuran           | 10-MAY-07 08:19  | 0.33   | 4.8    | µg/m³             |             | 1             | 1.6   |
| Tetrahydrofuran           | 10-MAY-07 08:19  | 0.227  | NDUJ   |                   |             | 1             | 0.5   |
| 1,2-Dichloroethane        |                  | 0.67   | ND UJ  |                   |             | 1             | 1.5   |
| 1,2-Dichloroethane        | 10-MAY-07 08:19  | 0.153  | ND     | ppb v/v           |             | 1             | 0.5   |
| Cyclohexane               | 10-MAY-07 08:19  | 0.62   | ND     | μg/m³             |             | 1             | 2.0   |
| Cyclohexane               | 10-MAY-07 08:19  | 0.120  | 1.4    | ppb v/v           |             | 1             | 0.5   |
| Trichloroethene           | 10-MAY-07 08:19  | 0.41   | 4.8    | µg/m³             |             | 1             | 1.7   |
| Trichloroethene           | 10-MAY-07 08:19  | 0.120  | ND     | ppb v/v           |             | 1             | 0.5   |
| 1,2-Dichloropropane       | 10-MAY-07 08:19  | 0.64   | ND     | µg/m³             |             | 1.            | 2.7   |
| 1,2-Dichloropropane       | 10-MAY-07 08:19  | 0.123  | ND     | ppb v/v           |             | 1             | 0.5   |
| Bromodichloromethane      | 10-MAY-07 08:19  | 0.57   | ND     | µg/m³             |             | 1             | 2.3   |
| Bromodichloromethane      | 10-MAY-07 08:19  | 0.0779 | ND     | ppb v/v           |             | 1             | 0.5   |
| Heptane                   | 10-MAY-07 08:19  | 0.52   | ND     | µg/m³             |             | 1             | 3.3   |
|                           | 10-MAY-07 08:19  | 0.101  | 2.3    | ppb v/v           |             | 1             | 0.5   |
| Heptane                   | 10-MAY-07 08:19  | 0.41   | 9.5    | µg/m³             |             | 1             | 2.0   |
| cis-1,3-Dichloropropene   | 10-MAY-07 08:19  | 0.106  | ND     | ppb v/v           |             | 1             | 0.5   |
| cis-1,3-Dichloropropene   | 10-MAY-07 08:19  | 0.48   | ND     | μg/m³             |             | 1             | 2.3   |
| 4-Methyl-2-Pentanone      | 10-MAY-07 08:19  | 0.116  | ND     | ppb v/v           |             | 1             | 0.5   |
| 4-Methyl-2-Pentanone      | 10-MAY-07 08:19  | 0.48   | ND     | µg/m³             |             | 1             | 2.0   |
| Toluene                   | 10-MAY-07 08:19  | 0.115  | 4.0    | ppb v/v           |             | 1             | 0.5   |
| Toluene                   | 10-MAY-07 08:19  | 0.43   | 15.    | µg/m³             |             | 1             | 1.9   |
| trans-1,3-Dichloropropene | 10-MAY-07 08:19  | 0.130  | ND     | ppb v/v           |             | 1 1           | 0.5   |
| trans-1,3-Dichloropropene | 10-MAY-07 08:19  | 0.59   | ND     | μg/m³             |             | 1             | 2.3 - |
| 1,1,2-Trichloroethane     | 10-MAY-07 08:19  | 0.0972 | ND     | ppb v/v           |             | 1             | 0.5   |
| 1,1,2-Trichloroethane     | 10-MAY-07 08:19  | 0.53   | ND     | µg/m³             |             | 1             | 27    |
| Tetrachloroethene         | 10-MAY-07 08:19  | 0.0847 | 0.19   | ppb v/v           | J           | 1             | 0.5   |
| Tetrachloroethene         | 10-MAY-07 08:19  | 0.57   | 1.3    | µg/m³             | J           | 1             | 3.4   |
| 2-Hexanone                | 10-MAY-07 08:19  | 0.136  | ND     | ppb v/v           |             | 1             | 0.5   |
| 2-Hexanone                | 10-MAY-07 08:19  | 0.56   | ND     | ua/m³             |             | 1             | 2.0   |
| Dibromochloromethane      | 10-MAY-07 08:19  | 0.0792 | ND     | ppb v/v           |             | 1             | 0.5   |
| Dibromochloromethane      | 10-MAY-07 08:19  | 0.67   | ND     | µg/m³             |             | 1             | 4.2   |
| 1,2-Dibromoethane         | 10-MAY-07 08:19  | 0.119  | ND     | ppb v/v           | <del></del> | 1             | 0.5   |
| 1,2-Dibromoethane         | 10-MAY-07 08:19  | 0.91   | ND     | µg/m³             |             | 1             |       |
| Chlorobenzene             | 10-MAY-07 08:19  | 0.0882 | ND     | ppb v/v           | <del></del> | 1             | 3.8   |
| Chlorobenzene             | 10-MAY-07 08:19  | 0.41   | ND     | hd/w <sub>3</sub> |             | 1             | 0.5   |
| Ethylbenzene              | 10-MAY-07 08:19  | 0.150  | 1.8    | ppb v/v           |             | 1             |       |
| Ethylbenzene              | 10-MAY-07 08:19  | 0.65   | 7.8    | na/w3             |             | $\frac{1}{1}$ | 0.5   |
| n,p-Xylene                | 10-MAY-07 08:19  | 0.213  | 2.3    | ppb v/v           |             |               | 2.2   |
| n,p-Xylene                | 10-MAY-07 08:19  | 0.92   | 10.    | hd/w <sub>3</sub> |             | 1             | 1.0   |
| o-Xylene                  | 10-MAY-07 08:19  | 0.113  | 1.1    | ppb v/v           |             | 1             | 4.3   |
| o-Xylene                  | 10-MAY-07 08:19  | 0.49   | 4.7    | hd/w <sub>3</sub> |             | 1             | 0.5   |
| Styrene                   | 10-MAY-07 08:19  | 0.0748 | ND     |                   |             | 1             | 2.2   |
| Styrene                   | 10-MAY-07 08:19  | 0.32   | ND     | ppb v/v           |             | 1             | 0.5   |
| Bromoform                 | 10-MAY-07 08:19  | 0.0884 | ND     | µg/m³             |             | 1             | 2.1   |
| Bromoform                 | 10-MAY-07 08:19  | 0.90   |        | ppb v/v           |             | 1             | 0.5   |
| .,1,2,2-Tetrachloroethane | 10-MAY-07 08:19  | 0.108  | ND     | µg/m³             |             | 1             | 5.1   |
| .,1,2,2-Tetrachloroethane | 10-MAY-07 08:19  | 0.108  | ND     | v/v dqq           |             | 1             | 0.5   |
| Senzyl Chloride           | 10-MAY-07 08:19  |        | ND     | nd/w3             |             | 1             | 3.4   |
|                           | 110-HH1-0/ 08:19 | 0.136  | ND     | ppb v/v           |             | 1             | 0.5   |

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 Web Page: www.datachem.com FAX (801) 268-9992 E-mail: lab@datachem.com



Form RLIMS63A-V1.4 05140711182227

Page 23



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 14-MAY-07 11:18 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02433 DCL Report Group..: 07E-0367-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units             | Qual  | Dilution                                         | PQL        |
|------------------------|------------------|--------|--------|-------------------|-------|--------------------------------------------------|------------|
| Benzyl Chloride        | 10-MAY-07 08:19  | 0.70   | ND     | ug/m³             | guar. | 1                                                | 2.6        |
| 4-Ethyl toluene        | 10-MAY-07 08:19  | 0.0983 | 0.28   | v/v dag           | J     | 1 1                                              |            |
| 4-Ethyl toluene        | 10-MAY-07 08:19  | 0.48   | 1.4    | nd/m3             | J     | 1 1                                              | 0.5<br>2.5 |
| 1,3,5-Trimethylbenzene | 10-MAY-07 08:19  | 0.112  | 0.42   | ppb v/v           | J     | <del>                                     </del> |            |
| 1,3,5-Trimethylbenzene | 10-MAY-07 08:19  | 0.55   | 2.1    | na/w3             | J     | <del>                                     </del> | 0.5<br>2.5 |
| 1,2,4-Trimethylbenzene | 10-MAY-07 08:19  | 0.117  | 1.5    | v\v dag           |       | + +                                              | 0.5        |
| 1,2,4-Trimethylbenzene | 10-MAY-07 08:19  | 0.58   | 7.2    | hd/w <sub>3</sub> |       | 1 1                                              | 2.5        |
| 1,3-Dichlorobenzene    | 10-MAY-07 08:19  | 0.120  | ND     | v\v dag           |       | 1                                                | 0.5        |
| 1,3-Dichlorobenzene    | 10-MAY-07 08:19  | 0.72   | ND     | nd/w3             |       | 1                                                | 3.0        |
| 1,4-Dichlorobenzene    | 10-MAY-07 08:19  | 0.0987 | ND     | v/v dag           |       | 1                                                |            |
| 1,4-Dichlorobenzene    | 10-MAY-07 08:19  | 0.59   | ND     | nd/m3             |       | 1 1                                              | 0.5<br>3.0 |
| 1,2-Dichlorobenzene    | 10-MAY-07 08:19  | 0.0851 | ND     | ppb v/v           |       | <del>                                     </del> |            |
| 1,2-Dichlorobenzene    | 10-MAY-07 08:19  | 0.51   | ND     | nd/w3             |       | 1 1                                              | 0.5        |
| 1,2,4-Trichlorobenzene | 10-MAY-07 08:19  | 0.115  | LU DN  | ppb v/v           |       | <del></del>                                      | 3.0        |
| 1,2,4-Trichlorobenzene | 10-MAY-07 08:19  | 0.85   | ND U3  | hd/w <sub>3</sub> |       | 1                                                | 0.5<br>3.7 |
| Hexachlorobutadiene    | 10-MAY-07 08:19  | 0.119  | LUCIN  | v/v dag           | ·     | 1                                                |            |
| Hexachlorobutadiene    | 10-MAY-07 08:19  | 1.3    | ND (13 | hd/m3             |       | 1                                                | 0.5<br>5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)        | Date<br>Analyzed | Result | Units   | Oual | Dilution                                         |
|--------------------------------|------------------|--------|---------|------|--------------------------------------------------|
| Methane, chlorodifluoro-(4.15) | 10-MAY-07 08:19  | 9.3    | ppb v/v | J    | 1                                                |
| Isobutane(4.53)                | 10-MAY-07 08:19  | 6.4    | ppb v/v | J    | 1 1                                              |
| Butane(4.79)                   | 10-MAY-07 08:19  | 4.0    | y\v dag | J    | <del>                                     </del> |
| Ethanol (5.27)                 | 10-MAY-07 08:19  | 7.1    | v\v dag | J    | 1 1                                              |
| Pentane(6.11)                  | 10-MAY-07 08:19  | 3.3    | v\v dag | .т   | 1                                                |
| Pentane, 2-methyl-(7.54)       | 10-MAY-07 08:19  | 2.9    | ppb v/v | J    | 1 1                                              |
| CYCLOPENTANE, METHYL-(8.98)    | 10-MAY-07 08:19  | 2.5    | v\v dqq | J    | 1 1                                              |
| CYCLOHEXANE, METHYL-(11.35)    | 10-MAY-07 08:19  | 3.1    | v\v daa | J    | 1                                                |

# BEHR VOC PLUME SITE DAYTON, OHIO DATA VALIDATION REPORT

**Date:** June 5, 2007

Laboratory: DataChem Laboratories, Inc. (DataChem), Salt Lake City, Utah

Laboratory SDG #/Set ID #: BEHR/07E-0376-01

Data Validation Performed By: Lisa Graczyk, Dynamac Corporation (Dynamac),

subcontractor to Weston Solutions, Inc. (Weston)

Weston Analytical Work Order #/TDD #: 20405.016.003.0121.00/S05-0612-007

This data validation report has been prepared by Dynamac, a Weston subcontractor, under the START III Region V contract. This report documents the data validation of air samples collected for the Behr VOC Plume Site that were analyzed for Volatile Organic Compounds (VOC) by U.S. Environmental Protection Agency (U.S. EPA) method TO-15. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Organic Data Review" dated October 1999.

#### **VOCs in Air by U.S. EPA Method TO15**

#### 1. Samples

The following table summarizes the samples for which this data validation is being conducted.

| <u>Samples</u> | <u>Lab ID</u> | <u>Matrix</u> | <u>Date</u><br><u>Collected</u> | <u>Date</u><br><u>Prepared</u> | <u>Date</u><br><u>Analyzed</u> |
|----------------|---------------|---------------|---------------------------------|--------------------------------|--------------------------------|
| EPA-26-SS      | 07E02466      | Air           | 05/07/07                        | NA                             | 05/09/07                       |
| EPA-27-IA      | 07E02467      | Air           | 05/07/07                        | NA                             | 05/09/07                       |

# 2. <u>Holding Times</u>

The samples were analyzed within the required holding time limit of 30 days from sample collection in accordance with method TO-15.

#### 3. Instrument Performance Check

The instrument performance check using bromofluorobenzene (BFB) was performed within the 24-hour period for which the samples were analyzed as required for method TO-15. The BFB standard met the ion abundance criteria specified in method TO-15.

Laboratory WO #: BEHR/07E-0376-01

### 4. <u>Initial Calibration</u>

For the initial calibration, the percent relative standard deviations (%RSD) for all compounds were less than 30 percent except for 1,2,4-trichlorobenzene and hexachlorobutadiene. The quantitation limits for these two compounds were flagged "UJ" as estimated for this discrepancy. The average relative response factors were all greater than 0.05.

# 5. <u>Continuing Calibration</u>

The percent differences (%D) in the continuing calibration standard for all target compounds were within the control limit of less than or equal to 25 percent.

#### 6. Blanks

The method blank associated with the samples was free of target compound contamination except for acetone which was detected at 0.35 part per billion. Because the acetone detection in sample EPA-26-SS was at less than 10 times the blank concentration, the result was flagged "U" as not detected.

#### 7. Surrogates

The 4-bromofluorobenzene surrogate spike recovery in the sample was within the quality control (QC) limits.

#### 8. <u>Laboratory Control Sample (LCS)</u>

All LCS recoveries and LCS duplicate recoveries were within the laboratory-established QC limits of 70 to 130 percent recovery except for 1,2,4-trichlorobenzene and hexachlorobutadiene which were detected low in the LCS. The quantitation limits for these two compounds were flagged "UJ" as estimated in the samples.

#### 9. <u>Internal Standard Results</u>

The internal standard area counts in the samples were within -50 percent to +100 percent of the area counts of the associated continuing calibration standard. The retention time of the internal standards did not vary more than  $\pm 30$  seconds from the retention time of the associated continuing calibration standard.

Data Validation Report Behr VOC Plume Site DataChem Laboratories

Laboratory WO #: BEHR/07E-0376-01

# 10. Target Compound Identification

A spot-check was performed of the mass spectra for detected compounds. The spot-check confirmed compound identification. DataChem appropriately flagged those results detected above the method detection limit but below the quantitation limit as "J" or estimated.

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0376-01

# **ATTACHMENT**

# DATACHEM LABORATORIES RESULTS SUMMARY



#### Form RLIMS63A-V1.4 05160709514170

Page 12



#### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 16-MAY-07 09:51

Client Name.....: Weston Solutions, Inc.

Client Ref Number...: 0055729

Sampling Site..... Behr VOC Plume PRP

Release Number.....: 0055729

Date Received.....: 09-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared......: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-26-SS
DCL Sample Name...: 07E02466
DCL Report Group..: 07E-0376-01

Matrix.......... AIR

Date Sampled....: 07-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....:

☒ As Received ☐ Dried

DCL Analysis Group: G074G01G
Analysis Method...: T0-15
Instrument Type...: GC/MS V0
Instrument ID....: 5972-W
Column Type....: DB-1

#### Analytical Results

| Analyte                  | Date<br>Analyzed                   | MDL    | Result | Units             | Qual.                                            | Dilution      | POL  |
|--------------------------|------------------------------------|--------|--------|-------------------|--------------------------------------------------|---------------|------|
| Propene                  | 09-MAY-07 12:34                    | 0.180  | ND     | v\v daa           | ~                                                | 1             | 0.5  |
| Propene                  | 09-MAY-07 12:34                    | 0.31   | ND     | ug/m³             |                                                  | 1 1           | 0.86 |
| Dichlorodifluoromethane  | 09-MAY-07 12:34                    | 0.0669 | 0.59   | ppb v/v           |                                                  | 1 1           | 0.5  |
| Dichlorodifluoromethane  | 09-MAY-07 12:34                    | 0.33   | 2.9    | ug/m³             | <del> </del>                                     | 1 1           | 2.5  |
| Chloromethane            | 09-MAY-07 12:34                    | 0.249  | ND     | ppb v/v           | <del> </del>                                     | 1 1           | 0.5  |
| Chloromethane            | 09-MAY-07 12:34                    | 0.51   | ND     | na/w3             | <del> </del>                                     | 1             | 1.0  |
| Freon 114                | 09-MAY-07 12:34                    | 0.156  | ND     | v\v dag           | <del>                                     </del> | 1 1           | 0.5  |
| Freon 114                | 09-MAY-07 12:34                    | 1.1    | ND     | ug/m³             |                                                  | $\frac{1}{1}$ | 3.5  |
| Vinyl Chloride           | 09-MAY-07 12:34                    | 0.301  | ND     | ppb v/v           |                                                  | $\frac{1}{1}$ | 0.5  |
| Vinyl Chloride           | 09-MAY-07 12:34                    | 0.77   | ND     | hd/w3             |                                                  | $\frac{1}{1}$ | 1.3  |
| 1,3-Butadiene            | 09-MAY-07 12:34                    | 0.346  | ND     | v\v dgg           |                                                  | $\frac{1}{1}$ | 0.5  |
| 1,3-Butadiene            | 09-MAY-07 12:34                    | 0.77   | ND     | nd/w3             |                                                  | $\frac{1}{1}$ | 1.1  |
| Bromomethane             | 09-MAY-07 12:34                    | 0.215  | ND     | v\v daa           |                                                  | $\frac{1}{1}$ | 0.5  |
| Bromomethane             | 09-MAY-07 12:34                    | 0.83   | ND     | hd/w <sub>3</sub> |                                                  | <del></del>   |      |
| Chloroethane             | 09-MAY-07 12:34                    | 0.388  | ND     | v/v daa           |                                                  | 1 1           | 1.9  |
| Chloroethane             | 09-MAY-07 12:34                    | 1.0    | ND     | ug/m³             |                                                  |               | 0.5  |
| Freon 11                 | 09-MAY-07 12:34                    | 0.0921 | 0.25   | v/v dga           |                                                  | 1             | 1.3  |
| Freon 11                 | 09-MAY-07 12:34                    | 0.52   | 1.4    | nd/w <sub>3</sub> | J                                                | 1 1           | 0.5  |
| cis-1,2-Dichloroethene   | 09-MAY-07 12:34                    | 0.102  | ND     | v/v daa           | J                                                | 1             | 2.8  |
| cis-1,2-Dichloroethene   | 09-MAY-07 12:34                    | 0.40   | ND     | ha/w <sub>3</sub> |                                                  | 1 1           | 0.5  |
| Carbon Disulfide         | 09-MAY-07 12:34                    | 0.111  | ND     | v\v daa           |                                                  | 1 1           | 2.0  |
| Carbon Disulfide         | 09-MAY-07 12:34                    | 0.35   | ND     | na/w <sub>3</sub> |                                                  | 1             | 0.5  |
| Freon 113                | 09-MAY-07 12:34                    | 0.0950 | ND     | μg/m³             |                                                  | 1             | 1.6  |
| Freon 113                | 09-MAY-07 12:34                    | 0.73   | ND .   | ha/w3             |                                                  | 1 1           | 0.5  |
| Acetone                  | 09-MAY-07 12:34                    | 0.113  | 3.1 1  |                   |                                                  | 1             | 3.8  |
| Acetone                  | 09-MAY-07 12:34                    | 0.113  | 7.3    | ppb v/v           | <u>B</u>                                         | 1             | 0.5  |
| Methylene Chloride       | 09-MAY-07 12:34                    | 0.168  | ND ND  | µg/m³             | В                                                | 1             | 1.2  |
| Methylene Chloride       | 09-MAY-07 12:34                    | 0.58   | ND     | ppb v/v           |                                                  | 1             | 0.5  |
| trans-1,2-Dichloroethene | 09-MAY-07 12:34                    | 0.118  | ND     | µg/m³             |                                                  | 1             | 1.7  |
| trans-1,2-Dichloroethene | 09-MAY-07 12:34                    | 0.47   | ND     | ppb v/v           |                                                  | 1             | 0.5  |
| 1,1-Dichloroethane       | 09-MAY-07 12:34                    | 0.116  | ND     | µg/m³             |                                                  | 1             | 2.0  |
| 1,1-Dichloroethane       | 09-MAY-07 12:34                    | 0.47   | ND     | v/v dqq           |                                                  | 1             | 0.5  |
| Methyl t-Butyl Ether     | 09-MAY-07 12:34                    | 0.147  | ND     | µg/m³             |                                                  | 1             | 2.0  |
| Methyl t-Butyl Ether     | 09-MAY-07 12:34                    | 0.53   | ND     | v/v dqq           |                                                  | 1             | 0.5  |
| Vinyl Acetate            | 09-MAY-07 12:34                    | 0.33   |        | ug/m³             |                                                  | 1             | 1.8  |
| Vinyl Acetate            | 09-MAY-07 12:34                    | 0.133  | ND     | ppb v/v           |                                                  | 1             | 0.5  |
| 1,1-Dichloroethene       | 09-MAY-07 12:34                    |        | ND     | µg/m³             |                                                  | 11            | 1.8  |
| 1,1-Dichloroethene       | 09-MAY-07 12:34                    | 0.109  | ND     | ppb v/v           |                                                  | 1             | 0.5  |
| 2-Butanone               | 09-MAY-07 12:34                    | 0.43   | ND     | µg/m³             |                                                  | 1             | 2.0  |
| 2-Butanone               | 09-MAY-07 12:34<br>09-MAY-07 12:34 | 0.182  | 0.48   | v/v dqq           | J                                                | 1             | 0.5  |
| Ethyl Acetate            | 09-MAY-07 12:34<br>09-MAY-07 12:34 | 0.54   | 1.4    | µg/m³             | J                                                | 1             | 1.5  |
|                          | 103-MAI-0/ 12:34                   | 0.273  | ND     | v/v dqq           |                                                  | 1             | 0.5  |

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 Web Page: www.datachem.com FAX (801) 268-9992 E-mail: lab@datachem.com

45107



Form RLIMS63A-V1.4 05160709514170

Page 13



# SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 16-MAY-07 09:51 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02466 DCL Report Group..: 07E-0376-01

| Analyte                   | Date<br>Analyzed                   | MDL    | Result | Units             | Qual.        | Dilution       | PQL   |
|---------------------------|------------------------------------|--------|--------|-------------------|--------------|----------------|-------|
| Ethyl Acetate             | 09-MAY-07 12:34                    | 0.98   | ND     | ug/m³             |              | 1              | 1.8   |
| Hexane                    | 09-MAY-07 12:34                    | 0.121  | 1.2    | ppb v/v           | <del> </del> | 1 1            | 0.5   |
| Hexane                    | 09-MAY-07 12:34                    | 0.43   | 4.1    | µq/m³             |              | 1              | 1.8   |
| Chloroform                | 09-MAY-07 12:34                    | 0.115  | ND     | v/v dag           |              | 1              | 0.5   |
| Chloroform                | 09-MAY-07 12:34                    | 0.56   | ND     | ug/m³             |              | 1 1            | 2.4   |
| 1,1,1-Trichloroethane     | 09-MAY-07 12:34                    | 0.0725 | ND     | ppb v/v           |              | 1 1            | 0.5   |
| 1,1,1-Trichloroethane     | 09-MAY-07 12:34                    | 0.40   | ND     | µg/m³             |              | $\frac{1}{1}$  | 2.7   |
| Carbon Tetrachloride      | 09-MAY-07 12:34                    | 0.0657 | ND     | ppb v/v           | <del></del>  | $\frac{1}{1}$  | 0.5   |
| Carbon Tetrachloride      | 09-MAY-07 12:34                    | 0.41   | ND     | ug/m³             |              | 1 1            | 3.1   |
| Benzene                   | 09-MAY-07 12:34                    | 0.102  | 0.56   | ppb v/v           | ļ            | $\frac{1}{1}$  | 0.5   |
| Benzene                   | 09-MAY-07 12:34                    | 0.33   | 1.8    | hd/w <sub>3</sub> |              | $+\frac{1}{1}$ |       |
| Tetrahydrofuran           | 09-MAY-07 12:34                    | 0.227  | ND     | ppb v/v           |              | $\frac{1}{1}$  | 1.6   |
| Tetrahydrofuran           | 09-MAY-07 12:34                    | 0.67   | ND     | nd/w <sub>3</sub> |              | 1 1            | 0.5   |
| 1,2-Dichloroethane        | 09-MAY-07 12:34                    | 0.153  | ND     | ppb v/v           |              |                | 1.5   |
| 1,2-Dichloroethane        | 09-MAY-07 12:34                    | 0.62   | ND     |                   |              | 1              | 0.5   |
| Cyclohexane               | 09-MAY-07 12:34                    | 0.120  | ND     | µg/m³             |              | 1              | 2.0   |
| Cyclohexane               | 09-MAY-07 12:34                    | 0.41   | ND     | ppb v/v           |              | 1              | 0.5   |
| Trichloroethene           | 09-MAY-07 12:34                    | 0.120  |        | µg/m³             |              | 1              | 1.7   |
| Trichloroethene           | 09-MAY-07 12:34<br>09-MAY-07 12:34 | 0.120  | ND     | ppb v/v           |              | 1              | 0.5   |
| 1,2-Dichloropropane       | 09-MAY-07 12:34                    |        | ND     | µg/m³             |              | 1              | 2.7   |
| 1,2-Dichloropropane       | 09-MAY-07 12:34<br>09-MAY-07 12:34 | 0.123  | ND     | v/v dqq           |              | 1              | 0.5   |
| Bromodichloromethane      |                                    | 0.57   | ND     | μg/m³             |              | 1              | 2.3   |
| Bromodichloromethane      | 09-MAY-07 12:34                    | 0.0779 | ND     | ppb v/v           |              | 1              | 0.5   |
| Heptane .                 | 09-MAY-07 12:34                    | 0.52   | ND     | μg/m³             |              | 1              | 3.3   |
|                           | 09-MAY-07 12:34                    | 0.101  | 0.90   | v/v dqq           | ***          | 1              | 0.5   |
| Heptane                   | 09-MAY-07 12:34                    | 0.41   | 3.7    | µg/m³             |              | 1              | 2.0   |
| cis-1,3-Dichloropropene   | 09-MAY-07 12:34                    | 0.106  | ND     | ppb v/v           |              | 1              | 0.5   |
| cis-1,3-Dichloropropene   | 09-MAY-07 12:34                    | 0.48   | ND     | µg/m³             |              | 1              | 2.3   |
| 4-Methyl-2-Pentanone      | 09-MAY-07 12:34                    | 0.116  | ND     | ppb v/v           |              | 1              | 0.5   |
| 4-Methyl-2-Pentanone      | 09-MAY-07 12:34                    | 0.48   | ND     | ug/m³             |              | 1              | 2.0   |
| Toluene                   | 09-MAY-07 12:34                    | 0.115  | 3.4    | ppb v/v           |              | 1              | 0.5   |
| Toluene                   | 09-MAY-07 12:34                    | 0.43   | 13.    | ug/m³             |              | 1              | 1.9   |
| trans-1,3-Dichloropropene | 09-MAY-07 12:34                    | 0.130  | ND     | ppb v/v           | ***          | 1              | 0.5   |
| trans-1,3-Dichloropropene | 09-MAY-07 12:34                    | 0.59   | ND     | µq/m³             |              | 1              | 2.3 - |
| 1,1,2-Trichloroethane     | 09-MAY-07 12:34                    | 0.0972 | ND     | v/v dag           |              | 1              | 0.5   |
| 1,1,2-Trichloroethane     | 09-MAY-07 12:34                    | 0.53   | ND     | na/w3             |              | 1              | 2.7   |
| Tetrachloroethene         | 09-MAY-07 12:34                    | 0.0847 | 0.16   | v\v dag           | J            | 1              | 0.5   |
| Tetrachloroethene         | 09-MAY-07 12:34                    | 0.57   | 1.1    | nd/m3             | J            | <del></del>    |       |
| 2-Hexanone                | 09-MAY-07 12:34                    | 0.136  | ND     | v/v dag           | - 0          | 1              | 3.4   |
| 2-Hexanone                | 09-MAY-07 12:34                    | 0.56   | ND     | nd/w <sub>3</sub> |              |                | 0.5   |
| Dibromochloromethane      | 09-MAY-07 12:34                    | 0.0792 | ND     | ppb v/v           |              | 1              | 2.0   |
| Dibromochloromethane      | 09-MAY-07 12:34                    | 0.67   | ND     | hd/w <sub>3</sub> |              | 1              | 0.5   |
| 1,2-Dibromoethane         | 09-MAY-07 12:34                    | 0.119  | ND     | μg/m³<br>v\v dqq  |              | 1              | 4.2   |
| 1,2-Dibromoethane         | 09-MAY-07 12:34                    | 0.91   | ND     |                   |              | 1              | 0.5   |
| Chlorobenzene             | 09-MAY-07 12:34                    | 0.0882 |        | ug/m³             |              | 1              | 3.8   |
| Chlorobenzene             | 09-MAY-07 12:34                    |        | ND     | ppb v/v           |              | 1              | 0.5   |
| Ethylbenzene              | 09-MAY-07 12:34                    | 0.41   | ND     | µg/m³             |              | 1              | 2.3   |
| Ethylbenzene              |                                    | 0.150  | 1.6    | ppb v/v           |              | 1              | 0.5   |
| m,p-Xylene                | 09-MAY-07 12:34                    | 0.65   | 7.1    | µg/m³             |              | 1              | 2.2   |
| m,p-Xylene                | 09-MAY-07 12:34                    | 0.213  | 3.7    | ppb v/v           |              | 1              | 1.0   |
| o-Xylene                  | 09-MAY-07 12:34                    | 0.92   | 16.    | µg/m³             |              | 1              | 4.3   |
| o-xylene<br>o-Xylene      | 09-MAY-07 12:34                    | 0.113  | 1.4    | ppb v/v           |              | 1              | 0.5   |
|                           | 09-MAY-07 12:34                    | 0.49   | 6.0    | µg/m³             |              | 1              | 2.2   |
| Styrene                   | 09-MAY-07 12:34                    | 0.0748 | 0.23   | ppb v/v           | J            | 1              | 0.5   |
| Styrene                   | 09-MAY-07 12:34                    | 0.32   | 0.98   | µg/m³             | J            | 1              | 2.1   |
| Bromoform                 | 09-MAY-07 12:34                    | 0.0884 | ND     | ppb v/v           |              | 1              | 0.5   |
| Bromoform                 | 09-MAY-07 12:34                    | 0.90   | ND     | µg/m³             |              | 1              | 5.1   |
| 1,1,2,2-Tetrachloroethane | 09-MAY-07 12:34                    | 0.108  | ND     | ppb v/v           | <del></del>  | 1              | 0.5   |
| 1,1,2,2-Tetrachloroethane | 09-MAY-07 12:34                    | 0.74   | ND     | µg/m³             |              | 1              | 3.4   |
| Benzyl Chloride           | 09-MAY-07 12:34                    | 0.136  | ND     | ppb v/v           |              | 1              | 0.5   |



Form RLIMS63A-V1.4 05160709514170

Page 14

# S074804Z

# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 16-MAY-07 09:51 Client Name....: Weston Solutions, Inc.

DCL Sample Name...: 07E02466
DCL Report Group..: 07E-0376-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Qual. | Dilution | PQL |
|------------------------|------------------|--------|--------|---------|-------|----------|-----|
| Benzyl Chloride        | 09-MAY-07 12:34  | 0.70   | ND     | µg/m³   | 2     | 1        | 2.6 |
| 4-Ethyl toluene        | 09-MAY-07 12:34  | 0.0983 | 0.53   | v\v daa |       | 1 1      | 0.5 |
| 4-Ethyl toluene        | 09-MAY-07 12:34  | 0.48   | 2.6    | ug/m³   |       | 1 1      | 2.5 |
| 1,3,5-Trimethylbenzene | 09-MAY-07 12:34  | 0.112  | 0.63   | v\v daa |       | 1 1      | 0.5 |
| 1,3,5-Trimethylbenzene | 09-MAY-07 12:34  | 0.55   | 3.1    | ug/m³   |       | 1        | 2.5 |
| 1,2,4-Trimethylbenzene | 09-MAY-07 12:34  | 0.117  | 2.2    | ppb v/v |       | 1 1      | 0.5 |
| 1,2,4-Trimethylbenzene | 09-MAY-07 12:34  | 0.58   | 11.    | µg/m³   |       | 1 1      | 2.5 |
| 1,3-Dichlorobenzene    | 09-MAY-07 12:34  | 0.120  | ND     | v\v dag |       | 1 1      | 0.5 |
| 1,3-Dichlorobenzene    | 09-MAY-07 12:34  | 0.72   | ND     | nd/m3   |       | 1 1      | 3.0 |
| 1,4-Dichlorobenzene    | 09-MAY-07 12:34  | 0.0987 | 0.88   | v/v dqq |       | 1 1      | 0.5 |
| 1,4-Dichlorobenzene    | 09-MAY-07 12:34  | 0.59   | 5.3    | µg/m³   |       | 1 1      | 3.0 |
| 1,2-Dichlorobenzene    | 09-MAY-07 12:34  | 0.0851 | ND     | v\v daa |       | 1 1      | 0.5 |
| 1,2-Dichlorobenzene    | 09-MAY-07 12:34  | 0.51   | ND     | µg/m³   |       | 1 1      | 3.0 |
| 1,2,4-Trichlorobenzene | 09-MAY-07 12:34  | 0.115  | ND D   | v\v dqq |       | 1        | 0.5 |
| 1,2,4-Trichlorobenzene | 09-MAY-07 12:34  | 0.85   | NDUT   | nd/w3   |       | 1 1      | 3.7 |
| Hexachlorobutadiene    | 09-MAY-07 12:34  | 0.119  | NDUT   | v/v dag | ***** | 1 1      | 0.5 |
| Hexachlorobutadiene    | 09-MAY-07 12:34  | 1.3    | NDUT   | µg/m³   |       | 1        | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)               | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|---------------------------------------|------------------|--------|---------|-------|----------|
| Isobutane(4.54)                       | 09-MAY-07 12:34  | 2.4    | v\v daa | J     | 1        |
| Ethanol (5.30)                        | 09-MAY-07 12:34  | 7.1    | v\v dag | J     | 1 1      |
| Undecane(18.71)                       | 09-MAY-07 12:34  | 5.4    | v\v dag | J     | 1 1      |
| Naphthalene, decahydro-2-methy(19.28) | 09-MAY-07 12:34  | 2.3    | v/v dag | J     | 1 1      |
| Naphthalene, decahydro-1-methy(19.56) | 09-MAY-07 12:34  | 3.1    | v\v dag | J     | 1        |
| Dodecane (20.29)                      | 09-MAY-07 12:34  | 2.3    | v/v dag | ıΤ    | 1        |

29 6|5|07



# Form RLIMS63A-V1.4 05160709514170

Page 15



#### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 16-MAY-07 09:51

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: 0055729

Sampling Site..... Behr VOC Plume PRP

Release Number....: 0055729

Date Received...... 09-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-27-IA DCL Sample Name...: 07E02467 DCL Report Group..: 07E-0376-01

Matrix..... AIR

Date Sampled....: 07-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis.....: ☒ As Received □ Dried

DCL Analysis Group: G074G01G Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-W Column Type..... DB-1

> X Primary ☐ Confirmation

| Analyte                 | Date<br>Analyzed | MDL    | Result | Units                                               | Oual.        | Dilution              | POL        |
|-------------------------|------------------|--------|--------|-----------------------------------------------------|--------------|-----------------------|------------|
| Propene                 | 09-MAY-07 13:11  | 0.180  | 23.    | v/v dag                                             | E            | 1                     | 0.5        |
| Propene                 | 09-MAY-07 13:11  | 0.31   | 40.    | na/w <sub>3</sub>                                   | E            | 1 1                   | 0.86       |
| Dichlorodifluoromethane | 09-MAY-07 13:11  | 0.0669 | 0.53   | ppb v/v                                             | <del></del>  | $\frac{1}{1}$         |            |
| Dichlorodifluoromethane | 09-MAY-07 13:11  | 0.33   | 2.6    | hd/w3                                               | <del> </del> | $\frac{1}{1}$         | 0.5<br>2.5 |
| Chloromethane           | 09-MAY-07 13:11  | 0.249  | 0.91   | ppb v/v                                             |              | $+$ $\frac{1}{1}$ $+$ | 0.5        |
| Chloromethane           | 09-MAY-07 13:11  | 0.51   | 1.9    | nd/w3                                               |              | $\frac{1}{1}$         | 1.0        |
| Freon 114               | 09-MAY-07 13:11  | 0.156  | ND     | v\v dag                                             |              | $+\frac{1}{1}+$       |            |
| Freon 114               | 09-MAY-07 13:11  | 1.1    | ND     | na/w3                                               |              | 1 1                   | 0.5<br>3.5 |
| Vinyl Chloride          | 09-MAY-07 13:11  | 0.301  | ND     | v\v daa                                             |              | $+\frac{1}{1}$        |            |
| Vinyl Chloride          | 09-MAY-07 13:11  | 0.77   | ND     | µg/m³                                               |              | 1                     | 0.5        |
| 1,3-Butadiene           | 09-MAY-07 13:11  | 0.346  | 0.75   | pg/m³                                               |              | 1                     | 1.3        |
| 1,3-Butadiene           | 09-MAY-07 13:11  | 0.77   | 1.6    | ug/m³                                               |              | 1 1                   | 0.5        |
| Bromomethane            | 09-MAY-07 13:11  | 0.215  | ND     | pyv dag                                             |              | 1                     | 1.1        |
| Bromomethane            | 09-MAY-07 13:11  | 0.83   | ND     | na/w3                                               |              | 1                     | 0.5        |
| Chloroethane            | 09-MAY-07 13:11  | 0.388  | ND     | v\v daa                                             |              | 1                     | 1.9        |
| Chloroethane            | 09-MAY-07 13:11  | 1.0    | ND     | na/w <sub>3</sub>                                   |              | 1 1                   | 0.5        |
| Freon 11                | 09-MAY-07 13:11  | 0.0921 | 0.39   | ppb v/v                                             | J            | 1 1                   | 1.3        |
| Freon 11                | 09-MAY-07 13:11  | 0.52   | 2.2    | ha/w <sub>3</sub>                                   | J            | 1                     | 0.5        |
| cis-1,2-Dichloroethene  | 09-MAY-07 13:11  | 0.102  | ND     | v/v dag                                             |              | 1                     | 2.8        |
| cis-1,2-Dichloroethene  | 09-MAY-07 13:11  | 0.40   | ND     | ha/w <sub>3</sub>                                   |              | 1                     | 0.5        |
| Carbon Disulfide        | 09-MAY-07 13:11  | 0.111  | ND     | v\v dag                                             |              | 1                     | 2.0        |
| Carbon Disulfide        | 09-MAY-07 13:11  | 0.35   | ND     | hd/w <sub>3</sub>                                   |              | 1                     | 0.5        |
| Freon 113               | 09-MAY-07 13:11  | 0.0950 | ND     | ppb v/v                                             |              | 1                     | 1.6        |
| Freon 113               | 09-MAY-07 13:11  | 0.73   | ND     | na/w <sub>3</sub>                                   |              | 1                     | 0.5        |
| Acetone                 | 09-MAY-07 13:11  | 0.113  | 93.    | v\v daa                                             | EB           | 1                     | 3.8        |
| Acetone                 | 09-MAY-07 13:11  | 0.27   | 220    | na/w3                                               | EB           | 1                     | 0.5        |
| Methylene Chloride      | 09-MAY-07 13:11  | 0.168  | ND     | ppb v/v                                             | Q.D          | 1                     | 1.2        |
| Methylene Chloride      | 09-MAY-07 13:11  | 0.58   | ND     | nd/m3                                               |              | 1                     | 0.5        |
| rans-1,2-Dichloroethene | 09-MAY-07 13:11  | 0.118  | ND     | ppb v/v                                             |              | 1                     | 1.7        |
| rans-1,2-Dichloroethene | 09-MAY-07 13:11  | 0.47   | ND     | na/w3                                               |              | 1                     | 0.5        |
| l,1-Dichloroethane      | 09-MAY-07 13:11  | 0.116  | ND     | v/v dag                                             |              |                       | 2.0        |
| ,1-Dichloroethane       | 09-MAY-07 13:11  | 0.47   | ND     | hd/w <sub>3</sub>                                   |              | 1                     | 0.5        |
| Methyl t-Butyl Ether    | 09-MAY-07 13:11  | 0.147  | ND     | ppb v/v                                             |              | $-\frac{1}{1}$        | 2.0        |
| Methyl t-Butyl Ether    | 09-MAY-07 13:11  | 0.53   | ND     | ha/w <sub>3</sub>                                   |              |                       | 0.5        |
| Vinyl Acetate           | 09-MAY-07 13:11  | 0.133  | ND     | v\v dag                                             |              | 1                     | 1.8        |
| Vinyl Acetate           | 09-MAY-07 13:11  | 0.47   | ND     | na/w3                                               |              | 1 1                   | 0.5        |
| ,1-Dichloroethene       | 09-MAY-07 13:11  | 0.109  | ND ND  | v/v dgg                                             |              | 1                     | 1.8        |
| ,1-Dichloroethene       | 09-MAY-07 13:11  | 0.43   | ND     | ha/w3                                               |              | 1                     | 0.5        |
| -Butanone               | 09-MAY-07 13:11  | 0.182  | 1.0    | μαν ν/ν μαση με |              | 1                     | 2.0        |
| 2-Butanone              | 09-MAY-07 13:11  | 0.54   | 3.0    | na/w <sub>3</sub>                                   |              | 1                     | 0.5        |
| thyl Acetate            | 09-MAY-07 13:11  | 0.273  | 1.0    | bbp n/n                                             |              | $-\frac{1}{1}$        | 1.5<br>0.5 |



Form RLIMS63A-V1.4 05160709514170 Page 16

# SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 16-MAY-07 09:51 Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E02467 DCL Report Group..: 07E-0376-01

|                           |                                    | ,      | <del></del> |                   |              |               |       |
|---------------------------|------------------------------------|--------|-------------|-------------------|--------------|---------------|-------|
| Analyte                   | Date<br>Analyzed                   | MDL    | Result      | Units             | Oual.        | Dilution      | DOT   |
| Ethyl Acetate             | 09-MAY-07 13:11                    | 0.98   | 3.6         | ug/m³             | Qual.        | Dilution      | PQL   |
| Hexane                    | 09-MAY-07 13:11                    | 0.121  | 0.34        | v\v daa           |              | 1 1           | 1.8   |
| Hexane                    | 09-MAY-07 13:11                    | 0.43   | 1.2         |                   | J            | 1 1           | 0.5   |
| Chloroform                | 09-MAY-07 13:11                    | 0.115  | ND ND       | µg/m³             | J            | 1 1           | 1.8   |
| Chloroform                | 09-MAY-07 13:11                    | 0.56   | ND          | ppb v/v           |              | 1 1           | 0.5   |
| 1,1,1-Trichloroethane     | 09-MAY-07 13:11                    | 0.0725 | ND          | ppb v/v           | <del> </del> | 1 1           | 2.4   |
| 1,1,1-Trichloroethane     | 09-MAY-07 13:11                    | 0.40   | ND          | hd/w <sub>3</sub> | <del> </del> | 1 1           | 0.5   |
| Carbon Tetrachloride      | 09-MAY-07 13:11                    | 0.0657 | ND          | ppb v/v           | <del> </del> | 1 1           | 2.7   |
| Carbon Tetrachloride      | 09-MAY-07 13:11                    | 0.41   | ND          |                   | <del></del>  | 1             | 0.5   |
| Benzene                   | 09-MAY-07 13:11                    | 0.102  | 0.49        | ppb v/v           | <del></del>  | 1             | 3.1   |
| Benzene                   | 09-MAY-07 13:11                    | 0.33   | 1.6         |                   | J            | 1             | 0.5   |
| Tetrahydrofuran           | 09-MAY-07 13:11                    | 0.227  | ND          | µg/m³             | J            | 1 1           | 1.6   |
| Tetrahydrofuran           | 09-MAY-07 13:11                    | 0.67   | ND          | ppb v/v           |              | $\frac{1}{1}$ | 0.5   |
| 1,2-Dichloroethane        | 09-MAY-07 13:11                    | 0.153  | ND          | µg/m³             |              | 1 1           | 1.5   |
| 1,2-Dichloroethane        | 09-MAY-07 13:11                    | 0.133  |             | ppb v/v           |              | 1             | 0.5   |
| Cyclohexane               | 09-MAY-07 13:11                    | 0.120  | ND          | ha/w3             |              | 1 1           | 2.0   |
| Cyclohexane               | 09-MAY-07 13:11                    | 0.120  | ND          | ppb v/v           |              | 1 1           | 0.5   |
| Trichloroethene           | 09-MAY-07 13:11                    | 0.120  | ND          | µg/m³             |              | 1             | 1.7   |
| Trichloroethene           | 09-MAY-07 13:11                    | 0.120  | ND<br>ND    | ppb v/v           |              | 1             | 0.5   |
| 1,2-Dichloropropane       | 09-MAY-07 13:11                    | 0.123  |             | µg/m³             |              | 1 1           | 2.7   |
| 1,2-Dichloropropane       | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.123  | ND          | ppb v/v           |              | 1 1           | 0.5   |
| Bromodichloromethane      | 09-MAY-07 13:11                    | 0.0779 | ND          | µg/m³             |              | 1             | 2.3   |
| Bromodichloromethane      | 09-MAY-07 13:11                    | 0.0779 | ND          | v\v dqq           |              | 1             | 0.5   |
| Heptane                   | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.101  | ND<br>0 17  | µg/m³             |              | 1             | 3.3   |
| Heptane                   | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.101  | 0.17        | v/v dqq           | J            | 1             | 0.5   |
| cis-1,3-Dichloropropene   | 09-MAY-07 13:11                    | 0.106  | 0.71        | µg/m³             | J            | 11            | 2.0   |
| cis-1,3-Dichloropropene   | 09-MAY-07 13:11<br>09-MAY-07 13:11 |        | ND          | ppb v/v           |              | 11            | 0.5   |
| 4-Methyl-2-Pentanone      | 09-MAY-07 13:11                    | 0.48   | ND          | ug/m³             |              | 1             | 2.3   |
| 4-Methyl-2-Pentanone      | 09-MAY-07 13:11                    | 0.116  | ND          | ppb v/v           |              | 1             | 0.5   |
| Toluene                   | 09-MAY-07 13:11                    | 0.115  | ND          | ug/m³             |              | 1             | 2.0   |
| Toluene                   | 09-MAY-07 13:11                    | 0.113  | 28          | v/v dqq           | E            | 11            | 0.5   |
| trans-1,3-Dichloropropene | 09-MAY-07 13:11                    | 0.130  | 100         | ug/m³             | E            | 1             | 1.9   |
| trans-1,3-Dichloropropene | 09-MAY-07 13:11                    | 0.130  | ND          | v\v dqq           |              | 1             | 0.5   |
| 1,1,2-Trichloroethane     | 09-MAY-07 13:11                    | 0.0972 | ND<br>ND    | µg/m³             |              | 1             | 2.3 - |
| 1,1,2-Trichloroethane     | 09-MAY-07 13:11                    | 0.0372 | ND<br>ND    | ppb v/v           |              | 1             | 0.5   |
| Tetrachloroethene         | 09-MAY-07 13:11                    | 0.0847 |             | nd/m3             |              | 1             | 2.7   |
| Tetrachloroethene         | 09-MAY-07 13:11                    | 0.57   | ND          | v\v dqq           |              | 1             | 0.5   |
| 2-Hexanone                | 09-MAY-07 13:11                    | 0.136  | ND<br>ND    | μg/m³             |              | 1             | 3.4   |
| 2-Hexanone                | 09-MAY-07 13:11                    | 0.56   | ND<br>ND    | v/v dqq           |              | 1             | 0.5   |
| Dibromochloromethane      | 09-MAY-07 13:11                    | 0.0792 | ND          | µg/m³             |              |               | 2.0   |
| Dibromochloromethane      | 09-MAY-07 13:11                    | 0.67   | ND          | ppb v/v           |              | 1             | 0.5   |
| 1,2-Dibromoethane         | 09-MAY-07 13:11                    | 0.119  | ND          | ug/m³             |              | 1             | 4.2   |
| 1,2-Dibromoethane         | 09-MAY-07 13:11                    | 0.91   | ND          | v/v dqq           |              |               | 0.5   |
| Chlorobenzene             | 09-MAY-07 13:11                    | 0.0882 | ND          | µg/m³             |              | 1             | 3.8   |
| Chlorobenzene             | 09-MAY-07 13:11                    | 0.41   |             | ppb v/v           |              | 1             | 0.5   |
| Ethylbenzene              | 09-MAY-07 13:11                    | 0.150  | ND          | μg/m³             |              | 1             | 2.3   |
| Ethylbenzene              | 09-MAY-07 13:11                    |        | 0.55        | ppb v/v           |              | 1             | 0.5   |
| m,p-Xylene                | 09-MAY-07 13:11                    | 0.65   | 2.4         | µg/m³             |              | 1             | 2.2   |
| m,p-Xylene                | 09-MAY-07 13:11<br>09-MAY-07 13:11 |        | 1.7         | v/v dag           |              | 1             | 1.0   |
| o-Xylene                  | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.92   | 7.2         | ug/m³             |              | 1             | 4.3   |
| o-Xylene                  | 09-MAY-07 13:11                    | 0.113  | 0.47        | v/v dag           | J            | 1             | 0.5   |
| Styrene                   | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.49   | 2.1         | µg/m³             | J            | 1             | 2.2   |
| Styrene                   | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.0748 | 0.43        | v/v dqq           | J            | 1             | 0.5   |
| Bromoform                 | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.32   | 1.8         | μg/m³             | J            | 1             | 2.1   |
| Bromoform                 | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.0884 | ND          | v\v dag           |              | 1             | 0.5   |
| 1,1,2,2-Tetrachloroethane | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.90   | ND          | ng/m³             |              | 1             | 5.1   |
| 1,1,2,2-Tetrachloroethane | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.108  | ND          | v\v dag           |              | 1             | 0.5   |
| Benzyl Chloride           | 09-MAY-07 13:11<br>09-MAY-07 13:11 | 0.74   | ND          | nd/w3             |              | 1             | 3.4   |
|                           | 103-MAY-0/ 13:11                   | 0.136  | ND          | ppb v/v           |              | 1             | 0.5   |



### Form RLIMS63A-V1.4 05160709514170

Page 17



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 16-MAY-07 09:51 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02467 DCL Report Group..: 07E-0376-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units             | Oual.    | Dilution                                         | PQL |
|------------------------|------------------|--------|--------|-------------------|----------|--------------------------------------------------|-----|
| Benzyl Chloride        | 09-MAY-07 13:11  | 0.70   | ND     | ug/m³             |          | 1                                                | 2.6 |
| 4-Ethyl toluene        | 09-MAY-07 13:11  | 0.0983 | ND     | ppb v/v           |          | 1 1                                              | 0.5 |
| 4-Ethyl toluene        | 09-MAY-07 13:11  | 0.48   | ND     | µq/m³             |          | 1 1                                              | 2.5 |
| 1,3,5-Trimethylbenzene | 09-MAY-07 13:11  | 0.112  | ND     | v\v dga           |          | 1 1                                              | 0.5 |
| 1,3,5-Trimethylbenzene | 09-MAY-07 13:11  | 0.55   | ND     | ug/m³             |          | 1 1                                              | 2.5 |
| 1,2,4-Trimethylbenzene | 09-MAY-07 13:11  | 0.117  | 0.36   | v\v dag           | J        | 1 1                                              | 0.5 |
| 1,2,4-Trimethylbenzene | 09-MAY-07 13:11  | 0.58   | 1.8    | ha/w <sub>3</sub> | J        | 1 1                                              | 2.5 |
| 1,3-Dichlorobenzene    | 09-MAY-07 13:11  | 0.120  | ND     | v\v dqq           | <u> </u> | 1 1                                              | 0.5 |
| 1,3-Dichlorobenzene    | 09-MAY-07 13:11  | 0.72   | ND     | hd/w <sub>3</sub> |          | 1 1                                              | 3.0 |
| 1,4-Dichlorobenzene    | 09-MAY-07 13:11  | 0.0987 | ND     | v\v daa           |          | <del>                                     </del> | 0.5 |
| 1,4-Dichlorobenzene    | 09-MAY-07 13:11  | 0.59   | ND     | nd/w <sub>3</sub> |          | <del>                                     </del> | 3.0 |
| 1,2-Dichlorobenzene    | 09-MAY-07 13:11  | 0.0851 | ND     | v\v daa           |          | 1 1                                              | 0.5 |
| 1,2-Dichlorobenzene    | 09-MAY-07 13:11  | 0.51   | ND     | na/w3             |          | <del>                                     </del> | 3.0 |
| 1,2,4-Trichlorobenzene | 09-MAY-07 13:11  | 0.115  | T() DN | v\v daa           |          | <del>                                     </del> | 0.5 |
| 1,2,4-Trichlorobenzene | 09-MAY-07 13:11  | 0.85   | CU DIN | hd/w3             |          | 1 1                                              | 3.7 |
| Hexachlorobutadiene    | 09-MAY-07 13:11  | 0.119  | ND UJ  |                   |          | 1 1                                              | 0.5 |
| Hexachlorobutadiene    | 09-MAY-07 13:11  | 1.3    | ND UJ  | nd/w <sub>3</sub> |          | 1 1                                              | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)        | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|--------------------------------|------------------|--------|---------|-------|----------|
| Ethane, 1,1-difluoro-(4.10)    | 09-MAY-07 13:11  | 52.    | v\v daa | J     | 1        |
| Isobutane(4.54)                | 09-MAY-07 13:11  | 7.3    | v/v dgg | ıŢ    | 1 1      |
| Ethanol (5.30)                 | 09-MAY-07 13:11  | 500    | v\v dag | J     | 1 1      |
| 1,3-Butadiene, 2-methyl-(6.21) | 09-MAY-07 13:11  | 2.3    | ppb v/v | J     | 1 1      |
| Cyclopentane(7.46)             | 09-MAY-07 13:11  | 3.8    | ppb v/v | ıŢ    | 1 1      |
| C11 Hydrocarbon(17.08)         | 09-MAY-07 13:11  | 2.8    | ppb v/v | J     | 1        |

29 6/5/07

# BEHR VOC PLUME SITE DAYTON, OHIO DATA VALIDATION REPORT

**Date:** June 5, 2007

Laboratory: DataChem Laboratories, Inc. (DataChem), Salt Lake City, Utah

Laboratory SDG #/Set ID #: BEHR/07E-0380-01

Data Validation Performed By: Lisa Graczyk, Dynamac Corporation (Dynamac),

subcontractor to Weston Solutions, Inc. (Weston)

Weston Analytical Work Order #/TDD #: 20405.016.003.0121.00/S05-0612-007

This data validation report has been prepared by Dynamac, a Weston subcontractor, under the START III Region V contract. This report documents the data validation of air samples collected for the Behr VOC Plume Site that were analyzed for Volatile Organic Compounds (VOC) by U.S. Environmental Protection Agency (U.S. EPA) method TO-15. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Organic Data Review" dated October 1999.

#### **VOCs in Air by U.S. EPA Method TO15**

#### 1. Samples

The following table summarizes the samples for which this data validation is being conducted.

| <u>Samples</u> | <u>Lab ID</u> | <u>Matrix</u> | <u>Date</u><br><u>Collected</u> | <u>Date</u><br><u>Prepared</u> | <u>Date</u><br><u>Analyzed</u> |
|----------------|---------------|---------------|---------------------------------|--------------------------------|--------------------------------|
| EPA-28-SS      | 07E02472      | Air           | 05/08/07                        | NA                             | 05/10/07                       |
| EPA-29-SS      | 07E02473      | Air           | 05/08/07                        | NA                             | 05/10/07                       |

# 2. <u>Holding Times</u>

The samples were analyzed within the required holding time limit of 30 days from sample collection in accordance with method TO-15.

#### 3. Instrument Performance Check

The instrument performance check using bromofluorobenzene (BFB) was performed within the 24-hour period for which the samples were analyzed as required for method TO-15. The BFB standard met the ion abundance criteria specified in method TO-15.

Laboratory WO #: BEHR/07E-0380-01

### 4. <u>Initial Calibration</u>

For the initial calibration, the percent relative standard deviations (%RSD) for all compounds were less than 30 percent except for propene. The results for propene were flagged "J" as estimated for this discrepancy. The average relative response factors were all greater than 0.05.

### 5. <u>Continuing Calibration</u>

The percent differences (%D) in the continuing calibration standard for all target compounds were within the control limit of less than or equal to 25 percent except for propene and acetone. The results for propene and acetone were flagged "J" as estimated for this discrepancy.

#### 6. Blanks

The method blank associated with the samples was free of target compound contamination.

# 7. <u>Surrogates</u>

The 4-bromofluorobenzene surrogate spike recoveries in the samples were within the quality control (QC) limits.

#### 8. Laboratory Control Sample (LCS)

All LCS recoveries and LCS duplicate recoveries were within the laboratory-established QC limits of 70 to 130 percent recovery.

# 9. <u>Internal Standard Results</u>

The internal standard area counts in the samples were within -50 percent to +100 percent of the area counts of the associated continuing calibration standard. The retention time of the internal standards did not vary more than  $\pm 30$  seconds from the retention time of the associated continuing calibration standard.

#### 10. Target Compound Identification

A spot-check was performed of the mass spectra for detected compounds. The spot-check confirmed compound identification. DataChem appropriately flagged those results

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0380-01

detected above the method detection limit but below the quantitation limit as "J" or estimated.

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0380-01

# **ATTACHMENT**

# DATACHEM LABORATORIES RESULTS SUMMARY



Form RLIMS63A-V1.4 05160710121726

Page 12

# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 16-MAY-07 10:12

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: 0055729

Sampling Site..... Behr VOC Plume PRP

Release Number....: 0055729

Date Received....: 10-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-28-SS | 107009

DCL Sample Name...: 07E02472 DCL Report Group..: 07E-0380-01

Matrix..... AIR

Date Sampled....: 08-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis.....: ☒ As Received ☐ Dried

DCL Analysis Group: G074G01H Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type....: DB-1

> X Primary ☐ Confirmation

# Analytical Results

| Analyte                     | Date<br>Analyzed | MDL    | Result       | ITm ÷ ÷ - | 0 3        |          |       |
|-----------------------------|------------------|--------|--------------|-----------|------------|----------|-------|
| Propene                     | 10-MAY-07 10:47  | 0.180  |              | Units     | Qual.      | Dilution | PQL   |
| Propene                     | 10-MAY-07 10:47  | 0.180  | 2.2 7        |           | <u> </u>   | 11       | 0.5   |
| Dichlorodifluoromethane     | 10-MAY-07 10:47  | 0.0669 | 3.8 ナ        |           |            | 1        | 0.86  |
| Dichlorodifluoromethane     | 10-MAY-07 10:47  | 0.0669 | 1.1          | ppb v/v   |            | 1        | 0.5   |
| Chloromethane               | 10-MAY-07 10:47  | 0.33   | 5.4          | µg/m³     | ļ <u>.</u> | 1        | 2.5   |
| Chloromethane               | 10-MAY-07 10:47  | 0.249  | ND           | ppb v/v   | <u> </u>   | 1 1      | 0.5   |
| Freon 114                   | 10-MAY-07 10:47  | 0.51   | ND           | µg/m³     | ļ          | 1        | 1.0   |
| Freon 114                   | 10-MAY-07 10:47  | 1.1    | ND           | ppb v/v   |            | 1        | 0.5   |
| Vinyl Chloride              | 10-MAY-07 10:47  | 0.301  | ND           | ha/w3     |            | 1        | 3.5   |
| Vinyl Chloride              | 10-MAY-07 10:47  | 0.301  | ND           | ppb v/v   |            | 1        | 0.5   |
| 1,3-Butadiene               | 10-MAY-07 10:47  | 0.77   | ND           | nd/w3     |            | 1        | 1.3   |
| 1,3-Butadiene               | 10-MAY-07 10:47  | 0.346  | ND           | v/v dqq   | ļ          | 1        | 0.5   |
| Bromomethane                | 10-MAY-07 10:47  |        | ND           | µg/m³     |            | 1        | 1.1   |
| Bromomethane                | 10-MAY-07 10:47  | 0.215  | ND           | v/v dqq   |            | 1        | 0.5   |
| Chloroethane                | 10-MAY-07 10:47  | 0.83   | ND           | ug/m³     |            | 1        | 1.9   |
| Chloroethane                | 10-MAY-07 10:47  |        | ND           | v/v dag   |            | 1        | 0.5   |
| Freon 11                    | 10-MAY-07 10:47  | 1.0    | ND           | µg/m³     |            | 1        | 1.3 - |
| Freon 11                    | 10-MAY-07 10:47  | 0.0921 | 1.1          | v/v dag   |            | 1        | 0.5   |
| cis-1,2-Dichloroethene      | 10-MAY-07 10:47  | 0.52   | 6.1          | µg/m³     |            | 1        | 2.8   |
| cis-1,2-Dichloroethene      | 10-MAY-07 10:47  | 0.102  | ND           | v\v daa   |            | 1        | 0.5   |
| Carbon Disulfide            | 10-MAY-07 10:47  | 0.40   | ND           | µg/m³     |            | 1        | 2.0   |
| Carbon Disulfide            | 10-MAY-07 10:47  | 0.111  | ND           | v/v dqq   |            | 1        | 0.5   |
| Freon 113                   |                  | 0.35   | ND           | µg/m³     |            | 1        | 1.6   |
| Freon 113                   | 10-MAY-07 10:47  | 0.0950 | ND           | ppb v/v   |            | 1        | 0.5   |
| Acetone                     | 10-MAY-07 10:47  | 0.73   | ND           | µg/m³     |            | 1        | 3.8   |
| Acetone                     | 10-MAY-07 10:47  | 0.113  | 24. J        | ppb v/v   | E          | 1        | 0.5   |
| Methylene Chloride          | 10-MAY-07 10:47  | 0.27   | 57. <b>5</b> | µg/m³     | E          | 1        | 1.2   |
| Methylene Chloride          | 10-MAY-07 10:47  | 0.168  | ND           | ppb v/v   |            | 1        | 0.5   |
| trans-1,2-Dichloroethene    | 10-MAY-07 10:47  | 0.58   | ND           | µg/m³     |            | 1        | 1.7   |
| trans-1,2-Dichloroethene    | 10-MAY-07 10:47  | 0.118  | ND           | ppb v/v   |            | 1        | 0.5   |
| 1,1-Dichloroethane          | 10-MAY-07 10:47  | 0.47   | ND           | μg/m³     |            | 1        | 2.0   |
| 1,1-Dichloroethane          | 10-MAY-07 10:47  | 0.116  | ND           | ppb v/v   |            | 1        | 0.5   |
| Methyl t-Butyl Ether        | 10-MAY-07 10:47  | 0.47   | ND           | µg/m³     |            | 1        | 2.0   |
| Methyl t-Butyl Ether        | 10-MAY-07 10:47  | 0.147  | ND           | ppb v/v   | 1          | 1        | 0.5   |
| Vinyl Acetate               | 10-MAY-07 10:47  | 0.53   | ND           | μg/m³     |            | 1        | 1.8   |
| Vinyl Acetate Vinyl Acetate | 10-MAY-07 10:47  | 0.133  | ND           | ppb v/v   |            | 1        | 0.5   |
| 1,1-Dichloroethene          | 10-MAY-07 10:47  | 0.47   | ND           | μg/m³     |            | 1        | 1.8   |
| 1,1-Dichloroethene          | 10-MAY-07 10:47  | 0.109  | ND           | v/v dqq   |            | 1        | 0.5   |
| 2-Butanone                  | 10-MAY-07 10:47  | 0.43   | ND           | µg/m³     |            | 1        | 2.0   |
| 2-Butanone                  | 10-MAY-07 10:47  | 0.182  | ND           | v/v dgg   |            | 1        | 0.5   |
| Ethyl Acetate               | 10-MAY-07 10:47  | 0.54   | ND           | µg/m³     |            | 1        | 1.5   |
| denyi Adecate               | 10-MAY-07 10:47  | 0.273  | ND           | v\v dag   |            | 1        | 0.5   |

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com



Form RLIMS63A-V1.4 05160710121726

Page 13



#### SAMPLE ANALYSIS DATA SHEET

Date Printed....: 16-MAY-07 10:12 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02472 DCL Report Group..: 07E-0380-01

#### Analytical Results

| Analyte                               | Date                        | MDI    | D 1 +- |         | I           |          |            |
|---------------------------------------|-----------------------------|--------|--------|---------|-------------|----------|------------|
| Ethyl Acetate                         | Analyzed<br>10-MAY-07 10:47 | MDL    | Result | Units   | Qual.       | Dilution | PQL        |
| Hexane                                |                             | 0.98   | ND     | µg/m³   |             | 1 1      | 1.8        |
| Hexane                                | 10-MAY-07 10:47             |        | 0.91   | ppb v/v |             | 1 1      | 0.5        |
| Chloroform                            | 10-MAY-07 10:47             | 0.43   | 3.2    | µg/m³   |             | 1 1      | 1.8        |
| Chloroform                            | 10-MAY-07 10:47             | 0.115  | ND     | ppb v/v |             | 1        | 0.5        |
| 1,1,1-Trichloroethane                 | 10-MAY-07 10:47             | 0.56   | ND     | µg/m³   |             | 1        | 2.4        |
| 1,1,1-Trichloroethane                 | 10-MAY-07 10:47             | 0.0725 | ND     | ppb v/v |             | 1        | 0.5        |
| Carbon Tetrachloride                  | 10-MAY-07 10:47             | 0.40   | ND     | μg/m³   |             | 1        | 2.7        |
| Carbon Tetrachloride                  | 10-MAY-07 10:47             | 0.0657 | ND     | ppb v/v |             | 1        | 0.5        |
| Benzene                               | 10-MAY-07 10:47             | 0.41   | ND     | μg/m³   |             | 1        | 3.1        |
| Benzene                               | 10-MAY-07 10:47             | 0.102  | 0.73   | ppb v/v |             | 1        | 0.5        |
|                                       | 10-MAY-07 10:47             | 0.33   | 2.3    | μg/m³   |             | 1        | 1.6        |
| Tetrahydrofuran                       | 10-MAY-07 10:47             | 0.227  | ND     | ppb v/v |             | 1        | 0.5        |
| Tetrahydrofuran                       | 10-MAY-07 10:47             | 0.67   | ND     | µg/m³   |             | 1        | 1.5        |
| 1,2-Dichloroethane 1,2-Dichloroethane | 10-MAY-07 10:47             | 0.153  | ND     | ppb v/v |             | 1        | 0.5        |
|                                       | 10-MAY-07 10:47             | 0.62   | ND     | μg/m³   |             | 1        | 2.0        |
| Cyclohexane                           | 10-MAY-07 10:47             | 0.120  | 0.71   | ppb v/v |             | 1        | 0.5        |
| Cyclohexane                           | 10-MAY-07 10:47             | 0.41   | 2.4    | μg/m³   |             | 1        | 1.7        |
| Trichloroethene                       | 10-MAY-07 10:47             | 0.120  | ND     | ppb v/v |             | 1        | 0.5        |
| Trichloroethene                       | 10-MAY-07 10:47             | 0.64   | ND     | μg/m³   |             | 1        | 2.7        |
| 1,2-Dichloropropane                   | 10-MAY-07 10:47             | 0.123  | ND     | ppb v/v |             | 1        | 0.5        |
| 1,2-Dichloropropane                   | 10-MAY-07 10:47             | 0.57   | ND     | μg/m³   |             | 1        | 2.3        |
| Bromodichloromethane                  | 10-MAY-07 10:47             | 0.0779 | ND     | ppb v/v |             | 1        | 0.5        |
| Bromodichloromethane                  | 10-MAY-07 10:47             | 0.52   | ND     | μg/m³   |             | 1        | 3.3        |
| Heptane                               | 10-MAY-07 10:47             | 0.101  | 0.66   | ppb v/v |             | 1        | 0.5        |
| Heptane                               | 10-MAY-07 10:47             | 0.41   | 2.7    | μg/m³   |             | 1        | 2.0        |
| cis-1,3-Dichloropropene               | 10-MAY-07 10:47             | 0.106  | ND     | ppb v/v |             | 1        | 0.5        |
| cis-1,3-Dichloropropene               | 10-MAY-07 10:47             | 0.48   | ND     | μg/m³   |             | 1        | 2.3        |
| 4-Methyl-2-Pentanone                  | 10-MAY-07 10:47             | 0.116  | ND     | ppb v/v |             | 1        | 0.5        |
| 4-Methyl-2-Pentanone                  | 10-MAY-07 10:47             | 0.48   | ND     | µg/m³   |             | 1        | 2.0        |
| Toluene                               | 10-MAY-07 10:47             | 0.115  | 1.8    | ppb v/v |             | 1        | 0.5        |
| Toluene                               | 10-MAY-07 10:47             | 0.43   | 6.8    | μg/m³   |             | 1        | 1.9        |
| trans-1,3-Dichloropropene             | 10-MAY-07 10:47             | 0.130  | ND     | ppb v/v |             | 1        | 0.5        |
| trans-1,3-Dichloropropene             | 10-MAY-07 10:47             | 0.59   | ND     | µg/m³   |             | 1        | 2.3 -      |
| 1,1,2-Trichloroethane                 | 10-MAY-07 10:47             | 0.0972 | ND     | ppb v/v |             | 1        | 0.5        |
| 1,1,2-Trichloroethane                 | 10-MAY-07 10:47             | 0.53   | ND     | µg/m³   |             | 1        | 2.7        |
| Tetrachloroethene                     | 10-MAY-07 10:47             | 0.0847 | 5.6    | ppb v/v |             | 1        | 0.5        |
| Tetrachloroethene                     | 10-MAY-07 10:47             | 0.57   | 38.    | µg/m³   |             | 1        | 3.4        |
| 2-Hexanone                            | 10-MAY-07 10:47             | 0.136  | ND     | ppb v/v |             | 1        | 0.5        |
| 2-Hexanone                            | 10-MAY-07 10:47             | 0.56   | ND     | µg/m³   |             | 1        | 2.0        |
| Dibromochloromethane                  | 10-MAY-07 10:47             | 0.0792 | ND     | ppb v/v |             | 1        | 0.5        |
| Dibromochloromethane                  | 10-MAY-07 10:47             | 0.67   | ND     | µg/m³   |             | 1        | 4.2        |
| 1,2-Dibromoethane                     | 10-MAY-07 10:47             | 0.119  | ND     | ppb v/v |             | 1        | 0.5        |
| 1,2-Dibromoethane                     | 10-MAY-07 10:47             | 0.91   | ND     | µg/m³   |             | 1        | 3.8        |
| Chlorobenzene                         | 10-MAY-07 10:47             | 0.0882 | ND     | ppb v/v |             | 1        | 0.5        |
| Chlorobenzene                         | 10-MAY-07 10:47             | 0.41   | ND     | μg/m³   |             | 1        | 2.3        |
| Ethylbenzene                          | 10-MAY-07 10:47             | 0.150  | 0.86   | ppb v/v |             | 1        | 0.5        |
| Ethylbenzene                          | 10-MAY-07 10:47             | 0.65   | 3.7    | µg/m³   |             | 1        | 2.2        |
| m,p-Xylene                            | 10-MAY-07 10:47             | 0.213  | 1.5    | ppb v/v |             | 1        | 1.0        |
| m,p-Xylene                            | 10-MAY-07 10:47             | 0.92   | 6.6    | µg/m³   |             | 1        | 4.3        |
| o-Xylene                              | 10-MAY-07 10:47             | 0.113  | 0.63   | ppb v/v |             | 1        | 0.5        |
| o-Xylene                              | 10-MAY-07 10:47             | 0.49   | 2.7    | µg/m³   | <del></del> | 1        | 2.2        |
| Styrene                               | 10-MAY-07 10:47             | 0.0748 | 0.10   | ppb v/v | J           | 1        | 0.5        |
| Styrene                               | 10-MAY-07 10:47             | 0.32   | 0.43   | µg/m³   | J.          | 1        | 2.1        |
| Bromoform                             | 10-MAY-07 10:47             | 0.0884 | ND     | ppb v/v | <del></del> | 1        |            |
| Bromoform                             | 10-MAY-07 10:47             | 0.90   | ND     | µg/m³   |             | 1        | 0.5<br>5.1 |
| 1,1,2,2-Tetrachloroethane             | 10-MAY-07 10:47             | 0.108  | ND     | ppb v/v |             | 1        |            |
| 1,1,2,2-Tetrachloroethane             | 10-MAY-07 10:47             | 0.74   | ND     | µg/m³   |             | 1        | 0.5        |
| Benzyl Chloride                       | 10-MAY-07 10:47             | 0.136  | ND     | ppb v/v |             |          | 3.4        |
|                                       |                             |        | 112    | PPD V/V |             | 1        | 0.5        |

013

E-mail: lab@datachem.com



Form RLIMS63A-V1.4 05160710121726

Page 14



#### SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 16-MAY-07 10:12 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02472 DCL Report Group..: 07E-0380-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Qual.                                 | Dilution | POL |
|------------------------|------------------|--------|--------|---------|---------------------------------------|----------|-----|
| Benzyl Chloride        | 10-MAY-07 10:47  | 0.70   | ND     | µg/m³   |                                       | 1        | 2.6 |
| 4-Ethyl toluene        | 10-MAY-07 10:47  | 0.0983 | 0.14   | v\v dag | J                                     | 1 1      | 0.5 |
| 4-Ethyl toluene        | 10-MAY-07 10:47  | 0.48   | 0.70   | µg/m³   | J                                     | 1        | 2.5 |
| 1,3,5-Trimethylbenzene | 10-MAY-07 10:47  | 0.112  | 0.25   | v\v daa | J                                     | 1 1      | 0.5 |
| 1,3,5-Trimethylbenzene | 10-MAY-07 10:47  | 0.55   | 1.2    | ug/m³   | J                                     | 1 1      | 2.5 |
| 1,2,4-Trimethylbenzene | 10-MAY-07 10:47  | 0.117  | 0.90   | v\v daa |                                       | 1 1      | 0.5 |
| 1,2,4-Trimethylbenzene | 10-MAY-07 10:47  | 0.58   | 4.4    | ug/m³   |                                       | 1 1      | 2.5 |
| 1,3-Dichlorobenzene    | 10-MAY-07 10:47  | 0.120  | ND     | v/v dqq | · · · · · · · · · · · · · · · · · · · | 1        | 0.5 |
| 1,3-Dichlorobenzene    | 10-MAY-07 10:47  | 0:72   | ND     | µg/m³   |                                       | 1 1      | 3.0 |
| 1,4-Dichlorobenzene    | 10-MAY-07 10:47  | 0.0987 | ND     | ppb v/v |                                       | 1 1      | 0.5 |
| 1,4-Dichlorobenzene    | 10-MAY-07 10:47  | 0.59   | ND     | hd/m3   |                                       | 1 1      | 3.0 |
| 1,2-Dichlorobenzene    | 10-MAY-07 10:47  | 0.0851 | ND     | ppb v/v |                                       |          | 0.5 |
| 1,2-Dichlorobenzene    | 10-MAY-07 10:47  | 0.51   | ND     | hd/w3   |                                       | 1 1      | 3.0 |
| 1,2,4-Trichlorobenzene | 10-MAY-07 10:47  | 0.115  | ND     | v/v dag |                                       | 1        | 0.5 |
| 1,2,4-Trichlorobenzene | 10-MAY-07 10:47  | 0.85   | ND     | µg/m³   |                                       | 1        | 3.7 |
| Hexachlorobutadiene    | 10-MAY-07 10:47  | 0.119  | ND     | v\v dqq |                                       | 1        | 0.5 |
| Hexachlorobutadiene    | 10-MAY-07 10:47  | 1.3    | ND     | µg/m³   |                                       | 1        | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
|                             | 10-MAY-07 10:47  | 2.4    | ppb v/v | J     | 1        |
| Unknown fluorocarbon(13.76) | 10-MAY-07 10:47  | 33.    | v\v dag | J     | 1        |



# Form RLIMS63A-V1.4 05160710121726

Page 15



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 16-MAY-07 10:12

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: 0055729

Sampling Site..... Behr VOC Plume PRP

Release Number....: 0055729

Date Received....: 10-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-29-SS | 108680

DCL Sample Name...: 07E02473 DCL Report Group..: 07E-0380-01

Matrix..... AIR

Date Sampled....: 08-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis.....: ☒ As Received ☐ Dried

DCL Analysis Group: G074G01H Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type.....: DB-1

> X Primary ☐ Confirmation

#### Analytical Results

| Analyte                  | Date<br>Analyzed | MDL    | Result            | Units             | Qual.        | Dilution      | PQL  |
|--------------------------|------------------|--------|-------------------|-------------------|--------------|---------------|------|
| Propene                  | 10-MAY-07 11:28  | 0.180  | 5.6 <b>J</b>      | ppb v/v           | · gaar.      | 1             | 0.5  |
| Propene                  | 10-MAY-07 11:28  | 0.31   | 9.6 <b>J</b>      | nd/w3             |              | 1 1           | 0.86 |
| Dichlorodifluoromethane. | 10-MAY-07 11:28  |        | 0.67              | v\v dag           |              | 1             | 0.86 |
| Dichlorodifluoromethane  | 10-MAY-07 11:28  | 0.33   | 3.3               | ug/m³             |              | 1             | 2.5  |
| Chloromethane            | 10-MAY-07 11:28  | 0.249  | ND                | ppb v/v           |              | 1             | 0.5  |
| Chloromethane            | 10-MAY-07 11:28  | 0.51   | ND                | ug/m³             | <del> </del> | 1             | 1.0  |
| Freon 114                | 10-MAY-07 11:28  | 0.156  | ND                | ppb v/v           | <del></del>  | 1             | 0.5  |
| Freon 114                | 10-MAY-07 11:28  | 1.1    | ND                | na/m3             |              | 1             | 3.5  |
| Vinyl Chloride           | 10-MAY-07 11:28  | 0.301  | ND                | ppb v/v           |              | 1             | 0.5  |
| Vinyl Chloride           | 10-MAY-07 11:28  | 0.77   | ND                | µg/m³             |              | 1             | 1.3  |
| 1,3-Butadiene            | 10-MAY-07 11:28  | 0.346  | ND                | ppb v/v           |              | 1             | 0.5  |
| 1,3-Butadiene            | 10-MAY-07 11:28  | 0.77   | ND                | hd/m3             |              | 1             | 1.1  |
| Bromomethane             | 10-MAY-07 11:28  | 0.215  | ND                | v\v dag           |              | 1             |      |
| Bromomethane             | 10-MAY-07 11:28  | 0.83   | ND                | nd/w <sub>3</sub> |              | 1             | 0.5  |
| Chloroethane             | 10-MAY-07 11:28  | 0.388  | ND                | ppb v/v           |              | $\frac{1}{1}$ | 1.9  |
| Chloroethane             | 10-MAY-07 11:28  | 1.0    | ND                | na/w <sub>3</sub> |              | 1             | 0.5  |
| Freon 11                 | 10-MAY-07 11:28  | 0.0921 | 0.38              | v\v dqq           | J            | 1             | 1.3  |
| Freon 11                 | 10-MAY-07 11:28  | 0.52   | 2.1               | na/w <sub>3</sub> | J            | 1             | 0.5  |
| cis-1,2-Dichloroethene   | 10-MAY-07 11:28  | 0.102  | 7.0               | ppb v/v           | Ü            | 1             | 2.8  |
| cis-1,2-Dichloroethene   | 10-MAY-07 11:28  | 0.40   | 28.               | hd/w <sub>3</sub> |              |               | 0.5  |
| Carbon Disulfide         | 10-MAY-07 11:28  | 0.111  | ND ND             | ppb v/v           |              | 1 1           | 2.0  |
| Carbon Disulfide         | 10-MAY-07 11:28  | 0.35   | ND                | hd/w <sub>3</sub> |              | 1             | 0.5  |
| Freon 113                | 10-MAY-07 11:28  | 0.0950 | 0.20              | v\v daa           | J            |               | 1.6  |
| Freon 113                | 10-MAY-07 11:28  | 0.73   | 1.5               | na/w3             | J            | $\frac{1}{1}$ | 0.5  |
| Acetone                  | 10-MAY-07 11:28  | 0.113  | 7.9               | v/v daa           | U I          |               | 3.8  |
| Acetone                  | 10-MAY-07 11:28  | 0.27   | 19. 7             | hd/w <sub>3</sub> |              | 1             | 0.5  |
| Methylene Chloride       | 10-MAY-07 11:28  | 0.168  | 1.3               | ppb v/v           |              |               | 1.2  |
| Methylene Chloride       | 10-MAY-07 11:28  | 0.58   | 4.4               | na/w3             |              | 1             | 0.5  |
| rans-1,2-Dichloroethene  | 10-MAY-07 11:28  | 0.118  | 0.38              | v/v dag           |              | 1             | 1.7  |
| rans-1,2-Dichloroethene  | 10-MAY-07 11:28  | 0.47   | 1.5               | hd/w3             |              | 1             | 0.5  |
| l,1-Dichloroethane       | 10-MAY-07 11:28  | 0.116  | 1.0               |                   | J            | 1 1           | 2.0  |
| ,1-Dichloroethane        | 10-MAY-07 11:28  | 0.47   | $\frac{1.0}{4.1}$ | ppb v/v           |              | 1             | 0.5  |
| Methyl t-Butyl Ether     | 10-MAY-07 11:28  | 0.147  | ND ND             | µg/m³             |              | 1             | 2.0  |
| Methyl t-Butyl Ether     | 10-MAY-07 11:28  | 0.53   | ND                | ppb v/v           |              | 1             | 0.5  |
| inyl Acetate             | 10-MAY-07 11:28  | 0.33   |                   | µg/m³             |              | 1             | 1.8  |
| Vinyl Acetate            | 10-MAY-07 11:28  | 0.133  | ND                | v/v daa           |              | 1             | 0.5  |
| ,1-Dichloroethene        | 10-MAY-07 11:28  | 0.109  | ND                | nd/w3             |              | 1             | 1.8  |
| ,1-Dichloroethene        | 10-MAY-07 11:28  | 0.109  | ND                | v/v dqq           |              | 1             | 0.5  |
| -Butanone                | 10-MAY-07 11:28  | 0.182  | ND                | ha/w3             |              | 1             | 2.0  |
| -Butanone                | 10-MAY-07 11:28  | 0.182  | ND                | ppb v/v           |              | 1             | 0.5  |
| Ethyl Acetate            | 10-MAY-07 11:28  |        | ND                | hd/w3             |              | 1             | 1.5  |
|                          | 110-MAI-0/ 11:28 | 0.273  | ND ,              | v/v dqq           |              | 1             | 0.5  |

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com

E-mail: lab@datachem.com



Form RLIMS63A-V1.4 05160710121726 Page 16

# SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 16-MAY-07 10:12 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02473 DCL Report Group..: 07E-0380-01

| Analyte                   | Date<br>Analyzed                   | MDL    | Pogult     | T7      |       |          |     |
|---------------------------|------------------------------------|--------|------------|---------|-------|----------|-----|
| Ethyl Acetate             | 10-MAY-07 11:28                    |        | Result     | Units   | Qual. | Dilution | PQL |
| Hexane                    | 10-MAY-07 11:28                    |        | ND         | µg/m³   | ļ     | 1        | 1.8 |
| Hexane                    | 10-MAY-07 11:28                    |        | 2.6        | v/v dqq | ļ     | 1 1      | 0.5 |
| Chloroform                | 10-MAY-07 11:28                    | 0.43   | 9.3        | µg/m³   | ļ     | 1        | 1.8 |
| Chloroform                | 10-MAY-07 11:28<br>10-MAY-07 11:28 | 0.115  | 5.6        | ppb v/v |       | 1 1      | 0.5 |
| 1,1,1-Trichloroethane     | 10-MAY-07 11:28                    | 0.56   | 27.        | µg/m³   |       | 1        | 2.4 |
| 1,1,1-Trichloroethane     | 10-MAY-07 11:28                    | 0.0725 | 4.7        | ppb v/v |       | 1        | 0.5 |
| Carbon Tetrachloride      | 10-MAY-07 11:28                    | 0.40   | 26.        | µg/m³   |       | 1        | 2.7 |
| Carbon Tetrachloride      | 10-MAY-07 11:28                    | 0.0657 | 0.41       | ppb v/v | J     | 1        | 0.5 |
| Benzene                   | 10-MAY-07 11:28                    | 0.41   | 2.5        | ug/m³   | J     | 1        | 3.1 |
| Benzene                   | 10-MAY-07 11:28                    | 0.102  | 1.5        | ppb v/v |       | 1        | 0.5 |
| Tetrahydrofuran           | 10-MAY-07 11:28                    | 0.33   | 4.7        | µg/m³   |       | 1        | 1.6 |
| Tetrahydrofuran           | 10-MAY-07 11:28                    | 0.227  | ND         | v/v dqq |       | 1 1      | 0.5 |
| 1,2-Dichloroethane        | 10-MAY-07 11:28                    | 0.67   | ND         | µg/m³   |       | 1 1      | 1.5 |
| 1,2-Dichloroethane        | 10-MAY-07 11:28                    | 0.153  | ND         | ppb v/v |       | 1        | 0.5 |
| Cyclohexane               | 10-MAY-07 11:28                    | 0.62   | ND         | µg/m³   |       | 1 1      | 2.0 |
| Cyclohexane               | 10-MAY-07 11:28<br>10-MAY-07 11:28 | 0.120  | 1.0        | ppb v/v |       | 1        | 0.5 |
| Trichloroethene           | 10-MAY-07 11:28<br>10-MAY-07 11:28 | 0.41   | 3.6        | µg/m³   |       | 1        | 1.7 |
| Trichloroethene           | 10-MAY-07 11:28<br>10-MAY-07 11:28 | 1.2    | 1000       | v/v dqq |       | 10       | 5.0 |
| 1,2-Dichloropropane       | 10-MAY-07 11:28<br>10-MAY-07 11:28 | 6.4    | 5400       | µg/m³   |       | 10       | 27. |
| 1,2-Dichloropropane       | 10-MAY-07 11:28<br>10-MAY-07 11:28 | 0.123  | ND         | v/v dqq |       | . 1      | 0.5 |
| Bromodichloromethane      | 10-MAY-07 11:28                    | 0.57   | ND         | µg/m³   |       | 1        | 2.3 |
| Bromodichloromethane      | 10-MAY-07 11:28                    | 0.0779 | ND         | v/v dgg |       | 1        | 0.5 |
| Heptane                   | 10-MAY-07 11:28<br>10-MAY-07 11:28 | 0.52   | ND         | µg/m³   |       | 1        | 3.3 |
| Heptane                   | 10-MAY-07 11:28                    | 0.101  | 2.2        | ppb v/v |       | 1        | 0.5 |
| cis-1,3-Dichloropropene   | 10-MAY-07 11:28                    | 0.41   | 9.2        | ug/m³   |       | 1        | 2.0 |
| cis-1,3-Dichloropropene   | 10-MAY-07 11:28                    | 0.106  | ND         | ppb v/v |       | 1        | 0.5 |
| 4-Methyl-2-Pentanone      | 10-MAY-07 11:28                    | 0.48   | ND         | ha/w3   |       | 1        | 2.3 |
| 4-Methyl-2-Pentanone      | 10-MAY-07 11:28                    | 0.116  | ND         | v/v dqq |       | 1        | 0.5 |
| Toluene                   | 10-MAY-07 11:28                    | 0.48   | ND ND      | µg/m³   |       | 1        | 2.0 |
| Toluene                   | 10-MAY-07 11:28                    | 0.113  | 5.4<br>20. | v/v dqq |       | 1        | 0.5 |
| trans-1,3-Dichloropropene | 10-MAY-07 11:28                    | 0.130  |            | µg/m³   |       | 1        | 1.9 |
| trans-1,3-Dichloropropene | 10-MAY-07 11:28                    | 0.59   | ND<br>ND   | ppb v/v |       | 1        | 0.5 |
| 1,1,2-Trichloroethane     | 10-MAY-07 11:28                    | 0.0972 | ND         | µg/m³   |       | 1        | 2.3 |
| 1,1,2-Trichloroethane     | 10-MAY-07 11:28                    | 0.53   | ND<br>ND   | v/v dqq |       | 1        | 0.5 |
| Tetrachloroethene         | 10-MAY-07 11:28                    | 0.85   | 41.        | µg/m³   |       | 1        | 2.7 |
| Tetrachloroethene         | 10-MAY-07 11:28                    | 5.7    | 280        | ppb v/v |       | 10       | 5.0 |
| 2-Hexanone                | 10-MAY-07 11:28                    | 0.136  | ND ND      | µg/m³   |       | 10       | 34. |
| 2-Hexanone                | 10-MAY-07 11:28                    | 0.56   | ND         | ppb v/v |       | 1        | 0.5 |
| Dibromochloromethane      | 10-MAY-07 11:28                    | 0.0792 | ND         | ug/m³   |       | 1        | 2.0 |
| Dibromochloromethane      | 10-MAY-07 11:28                    | 0.67   | ND         | ppb v/v |       | 1        | 0.5 |
| 1,2-Dibromoethane         | 10-MAY-07 11:28                    | 0.119  | ND         | µg/m³   |       | 1        | 4.2 |
| 1,2-Dibromoethane         | 10-MAY-07 11:28                    | 0.119  | ND         | ppb v/v |       | 1        | 0.5 |
| Chlorobenzene             | 10-MAY-07 11:28                    | 0.0882 | ND         |         |       | 1        | 3.8 |
| Chlorobenzene             | 10-MAY-07 11:28                    | 0.41   | ND ND      | ppb v/v |       | 1        | 0.5 |
| Ethylbenzene              | 10-MAY-07 11:28                    | 0.150  | 2.4        | ug/m³   |       | 1        | 2.3 |
| Ethylbenzene              | 10-MAY-07 11:28                    | 0.65   | 10.        | ppb v/v |       | 1 -      | 0.5 |
| n,p-Xylene                | 10-MAY-07 11:28                    | 0.03   | 3.5        | µg/m³   |       | 1        | 2.2 |
| n,p-Xylene                | 10-MAY-07 11:28                    | 0.213  | 15.        | ppb v/v |       | 1 .      | 1.0 |
| o-Xylene                  | 10-MAY-07 11:28                    | 0.113  | 1.9        | µg/m³   |       | 1        | 4.3 |
| o-Xylene                  | 10-MAY-07 11:28                    | 0.49   | 8.4        | ppb v/v |       | 1        | 0.5 |
| Styrene                   | 10-MAY-07 11:28                    | 0.0748 |            | ug/m³   |       | 1        | 2.2 |
| Styrene                   | 10-MAY-07 11:28                    | 0.0748 | 0.19       | ppb v/v |       | 1        | 0.5 |
| Bromoform                 | 10-MAY-07 11:28                    | 0.0884 | 0.82       | µg/m³   | J     | 1        | 2.1 |
| Bromoform                 | 10-MAY-07 11:28                    | 0.90   | ND         | ppb v/v |       | 1        | 0.5 |
| .,1,2,2-Tetrachloroethane | 10-MAY-07 11:28                    | 0.108  | ND         | µg/m³   |       | 1        | 5.1 |
| .,1,2,2-Tetrachloroethane | 10-MAY-07 11:28                    | 0.108  | ND         | ppb v/v |       | 1        | 0.5 |
| Benzyl Chloride           | 10-MAY-07 11:28                    | 0.136  | ND         | nd/m3   |       | 1        | 3.4 |
|                           | 120 122 0/ 11:28                   | 0.130  | ND         | ppb v/v | 1     | 1        | 0.5 |



Form RLIMS63A-V1.4 05160710121726

Page 17



# SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 16-MAY-07 10:12

Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02473

DCL Report Group..: 07E-0380-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units             | Qual     | Dilution                                         | PQL |
|------------------------|------------------|--------|--------|-------------------|----------|--------------------------------------------------|-----|
| Benzyl Chloride        | 10-MAY-07 11:28  | 0.70   | ND     | µg/m³             | A was    | 1                                                |     |
| 4-Ethyl toluene        | 10-MAY-07 11:28  | 0.0983 | 0.43   | ppb v/v           | J        | 1 1                                              | 2.6 |
| 4-Ethyl toluene        | 10-MAY-07 11:28  | 0.48   | 2.1    | nd/w3             | J        | +                                                | 0.5 |
| 1,3,5-Trimethylbenzene | 10-MAY-07 11:28  | 0.112  | 0.60   | ppb v/v           | <u> </u> | 1 1                                              | 2.5 |
| 1,3,5-Trimethylbenzene | 10-MAY-07 11:28  | 0.55   | 3.0    | hd/w <sub>3</sub> |          | + + +                                            | 0.5 |
| 1,2,4-Trimethylbenzene | 10-MAY-07 11:28  | 0.117  | 2.3    | ppb v/v           |          | <del>                                     </del> | 2.5 |
| 1,2,4-Trimethylbenzene | 10-MAY-07 11:28  | 0.58   | 11.    | hd/m <sub>3</sub> |          | 1 1                                              | 0.5 |
| 1,3-Dichlorobenzene    | 10-MAY-07 11:28  | 0.120  | ND     | pg/m³             |          | +                                                | 2.5 |
| 1,3-Dichlorobenzene    | 10-MAY-07 11:28  | 0.72   | ND     | hd/w <sub>3</sub> |          | ++                                               | 0.5 |
| 1,4-Dichlorobenzene    | 10-MAY-07 11:28  | 0.0987 | 2.0    | v\v dag           |          | <del>                                     </del> | 3.0 |
| 1,4-Dichlorobenzene    | 10-MAY-07 11:28  | 0.59   | 12.    | hd/w <sub>3</sub> |          | <del></del>                                      | 0.5 |
| 1,2-Dichlorobenzene    | 10-MAY-07 11:28  | 0.0851 | ND     | v\v dag           |          | <del>                                     </del> | 3.0 |
| 1,2-Dichlorobenzene    | 10-MAY-07 11:28  | 0.51   | ND     | hd/w <sub>3</sub> |          | <del>                                     </del> | 0.5 |
| 1,2,4-Trichlorobenzene | 10-MAY-07 11:28  | 0.115  | ND     | v\v dag           |          | <del>                                     </del> | 3.0 |
| 1,2,4-Trichlorobenzene | 10-MAY-07 11:28  | 0.85   | ND     |                   |          | 1 1                                              | 0.5 |
| Hexachlorobutadiene    | 10-MAY-07 11:28  | 0.119  | ND     | ug/m³             |          | 1                                                | 3.7 |
| Hexachlorobutadiene    | 10-MAY-07 11:28  | 1.3    | ND     | ppb v/v           |          | 1 1                                              | 0.5 |
|                        | 120 222 07 11.20 | 1.0    | ואט ן  | μg/m³             |          |                                                  | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units   | Qual. | Dilution |
|-----------------------------|------------------|--------|---------|-------|----------|
| Unknown fluorocarbon(4.53)  | 10-MAY-07 11:28  | 3.6    | ppb v/v | J     | 1        |
| Isobutane(4.63)             | 10-MAY-07 11:28  |        | v\v dag | T     | 1 1      |
| Butane (4.91)               | 10-MAY-07 11:28  | 3.3    | v\v dag | J     | 1        |
| 1-Propene, 2-methyl-(5.82)  | 10-MAY-07 11:28  | 2.7    | ppb v/v | J     | 1        |
| Pentane(6.25)               | 10-MAY-07 11:28  | 2.5    | ppb v/v | J     | 1        |
| CYCLOHEXANE, METHYL-(11.42) | 10-MAY-07 11:28  | 2.4    | v/v dag | J     | 1        |
| Unknown fluorocarbon(13.77) | 10-MAY-07 11:28  | 20.    | ppb v/v | J     | 1        |
| C11 Hydrocarbon(17.41)      | 10-MAY-07 11:28  | 2.4    | ppb v/v | J     | 1        |
| Undecane (18.66)            | 10-MAY-07 11:28  | 3.5    | ppb v/v | J     | 1        |
| Dodecane (20.22)            | 10-MAY-07 11:28  | 2.8    | ppb v/v | J     | 1        |

017

# BEHR VOC PLUME SITE DAYTON, OHIO DATA VALIDATION REPORT

**Date:** June 5, 2007

Laboratory: DataChem Laboratories, Inc. (DataChem), Salt Lake City, Utah

Laboratory SDG #/Set ID #: BEHR/07E-0383-01

Data Validation Performed By: Lisa Graczyk, Dynamac Corporation (Dynamac),

subcontractor to Weston Solutions, Inc. (Weston)

Weston Analytical Work Order #/TDD #: 20405.016.003.0121.00/S05-0612-007

This data validation report has been prepared by Dynamac, a Weston subcontractor, under the START III Region V contract. This report documents the data validation of air samples collected for the Behr VOC Plume Site that were analyzed for Volatile Organic Compounds (VOC) by U.S. Environmental Protection Agency (U.S. EPA) method TO-15. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Organic Data Review" dated October 1999.

#### **VOCs in Air by U.S. EPA Method TO15**

#### 1. Samples

The following table summarizes the samples for which this data validation is being conducted.

| <u>Samples</u> | <u>Lab ID</u> | <u>Matrix</u> | <u>Date</u><br><u>Collected</u> | <u>Date</u><br><u>Prepared</u> | <u>Date</u><br><u>Analyzed</u> |
|----------------|---------------|---------------|---------------------------------|--------------------------------|--------------------------------|
| EPA-30-SS      | 07E02477      | Air           | 05/09/07                        | NA                             | 05/15/07                       |
| EPA-31-SS      | 07E02478      | Air           | 05/09/07                        | NA                             | 05/15/07                       |

# 2. <u>Holding Times</u>

The samples were analyzed within the required holding time limit of 30 days from sample collection in accordance with method TO-15.

#### 3. Instrument Performance Check

The instrument performance check using bromofluorobenzene (BFB) was performed within the 24-hour period for which the samples were analyzed as required for method TO-15. The BFB standard met the ion abundance criteria specified in method TO-15.

Laboratory WO #: BEHR/07E-0383-01

### 4. <u>Initial Calibration</u>

For the initial calibration, the percent relative standard deviations (%RSD) for all compounds were less than 30 percent. The average relative response factors were all greater than 0.05.

# 5. <u>Continuing Calibration</u>

The percent differences (%D) in the continuing calibration standard for all target compounds were within the control limit of less than or equal to 25 percent except for hexachlorobutadiene which had a %D of 26. No qualifications were applied for this minor discrepancy.

#### 6. Blanks

The method blank associated with the samples was free of target compound contamination.

#### 7. <u>Surrogates</u>

The 4-bromofluorobenzene surrogate spike recoveries in the samples were within the quality control (QC) limits.

#### 8. Laboratory Control Sample (LCS)

All LCS recoveries and LCS duplicate recoveries were within the laboratory-established QC limits of 70 to 130 percent recovery except for hexachlorobutadiene which was detected high in the LCS and LCS duplicate. Because hexachlorobutadiene was not detected in the samples no qualifications are warranted.

#### 9. Internal Standard Results

The internal standard area counts in the samples were within -50 percent to +100 percent of the area counts of the associated continuing calibration standard. The retention time of the internal standards did not vary more than  $\pm 30$  seconds from the retention time of the associated continuing calibration standard.

#### 10. Target Compound Identification

A spot-check was performed of the mass spectra for detected compounds. The spot-check confirmed compound identification. DataChem appropriately flagged those results

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0383-01

detected above the method detection limit but below the quantitation limit as "J" or estimated.

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0383-01

# **ATTACHMENT**

# DATACHEM LABORATORIES RESULTS SUMMARY



# Form RLIMS63A-V1.4 05180709005401

Page 12



# SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 18-MAY-07 09:00

Client Name..... : Weston Solutions, Inc.

Client Ref Number...: 0055729

Sampling Site..... Behr VOC Plume PRP

Release Number....: 0055729

Date Received.....: 11-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-30-SS DCL Sample Name...: 07E02477 DCL Report Group..: 07E-0383-01

Matrix....: AIR

Date Sampled....: 09-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....: ☒ As Received ☐ Dried

DCL Analysis Group: G074J010 Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type..... DB-1

> X Primary ☐ Confirmation

| Analyte                  | Date<br>Analyzed | MDL    | Result | Units             | Oual.    | Dilution      | POL               |
|--------------------------|------------------|--------|--------|-------------------|----------|---------------|-------------------|
| Propene                  | 15-MAY-07 17:26  | 0.180  | 2.5    | ppb v/v           | Qual.    | 1             |                   |
| Propene                  | 15-MAY-07 17:26  | 0.31   | 4.4    | na/w <sub>3</sub> |          | 1 1           | 0.5<br>0.86       |
| Dichlorodifluoromethane  | 15-MAY-07 17:26  | 0.0669 | 0.69   | ppb v/v           |          | 1             | 0.86              |
| Dichlorodifluoromethane  | 15-MAY-07 17:26  | 0.33   | 3.4    | na/w <sub>3</sub> |          | 1 1           | 2.5               |
| Chloromethane            | 15-MAY-07 17:26  | 0.249  | ND     | ppb v/v           |          | $\frac{1}{1}$ | 0.5               |
| Chloromethane            | 15-MAY-07 17:26  | 0.51   | ND     | nd/w3             |          | 1             | 1.0               |
| Freon 114                | 15-MAY-07 17:26  | 0.156  | ND     | v\v daa           |          | 1 1           |                   |
| Freon 114                | 15-MAY-07 17:26  | 1.1    | ND     | na/w3             |          | 1             | 0.5<br>3.5        |
| Vinyl Chloride           | 15-MAY-07 17:26  | 0.301  | ND     | v\v daa           |          | 1             | 0.5               |
| Vinyl Chloride           | 15-MAY-07 17:26  | 0.77   | ND     | nd/m3             |          | 1             |                   |
| 1,3-Butadiene            | 15-MAY-07 17:26  | 0.346  | 0.74   | ppb v/v           | ·        | $\frac{1}{1}$ | 1.3               |
| 1,3-Butadiene            | 15-MAY-07 17:26  | 0.77   | 1.6    | nd/w3             |          | 1             | 0.5               |
| Bromomethane             | 15-MAY-07 17:26  | 0.215  | ND     | y\v dag           |          | 1             | $\frac{1.1}{0.5}$ |
| Bromomethane             | 15-MAY-07 17:26  | 0.83   | ND     | na/w <sub>3</sub> |          | 1             | 0.5               |
| Chloroethane             | 15-MAY-07 17:26  | 0.388  | ND     | ppb v/v           |          | 1             | 1.9               |
| Chloroethane             | 15-MAY-07 17:26  | 1.0    | ND     | na/w <sub>3</sub> |          | 1             | 0.5               |
| Freon 11                 | 15-MAY-07 17:26  | 0.0921 | 0.32   | ppb v/v           | J        | 1             | 1.3               |
| Freon 11                 | 15-MAY-07 17:26  | 0.52   | 1.8    | nd/w <sub>3</sub> | J        | 1             | 0.5               |
| cis-1,2-Dichloroethene   | 15-MAY-07 17:26  | 0.102  | ND     | v\v dag           | <u> </u> | 1             | 2.8               |
| cis-1,2-Dichloroethene   | 15-MAY-07 17:26  | 0.40   | ND     | nd/w <sub>3</sub> |          |               | 0.5               |
| Carbon Disulfide         | 15-MAY-07 17:26  | 0.111  | 0.99   | v\v dag           |          | 1             | 2.0               |
| Carbon Disulfide         | 15-MAY-07 17:26  | 0.35   | 3.1    | hd/w <sub>3</sub> |          | 1             | 0.5               |
| Freon 113                | 15-MAY-07 17:26  | 0.0950 | ND     | ppb v/v           |          | 1             | 1.6               |
| Freon 113                | 15-MAY-07 17:26  | 0.73   | ND     | na/w3             |          | 1 1           | 0.5               |
| Acetone                  | 15-MAY-07 17:26  | 0.113  | 5.9    | v/v dag           |          | 1             | 3.8               |
| Acetone                  | 15-MAY-07 17:26  | 0.27   | 14.    | hd/w <sub>3</sub> |          | 1             | 0.5               |
| Methylene Chloride       | 15-MAY-07 17:26  | 0.168  | ND ND  | v\v dag           |          | 1             | 1.2               |
| Methylene Chloride       | 15-MAY-07 17:26  | 0.58   | ND     | ha/w <sub>3</sub> |          | 1             | 0.5               |
| trans-1,2-Dichloroethene | 15-MAY-07 17:26  | 0.118  | ND     |                   |          | 1             | 1.7               |
| trans-1,2-Dichloroethene | 15-MAY-07 17:26  | 0.47   | ND     | ppb v/v           |          | 1             | 0.5               |
| l,1-Dichloroethane       | 15-MAY-07 17:26  | 0.116  | ND ND  | ug/m³             |          | 1             | 2.0               |
| l,1-Dichloroethane       | 15-MAY-07 17:26  | 0.47   | ND ND  | v/v dqq           |          | 1             | 0.5               |
| Methyl t-Butyl Ether     | 15-MAY-07 17:26  | 0.147  | ND ND  | µg/m³             |          | 1             | 2.0               |
| Methyl t-Butyl Ether     | 15-MAY-07 17:26  | 0.53   | ND     | ppb v/v           |          | 1             | 0.5               |
| /inyl Acetate            | 15-MAY-07 17:26  | 0.133  | ND     | µg/m³             |          | 1             | 1.8               |
| Jinyl Acetate            | 15-MAY-07 17:26  | 0.47   |        | ppb v/v           |          | 1             | 0.5               |
| ,1-Dichloroethene        | 15-MAY-07 17:26  | 0.109  | ND     | µg/m³             |          | 1             | 1.8               |
| ,1-Dichloroethene        | 15-MAY-07 17:26  | 0.109  | ND     | ppb v/v           |          | 1             | 0.5               |
| 2-Butanone               | 15-MAY-07 17:26  | 0.182  | ND     | ug/m³             |          | 11            | 2.0               |
| -Butanone                | 15-MAY-07 17:26  |        | 5.9    | v/v dqq           |          | 1             | 0.5               |
| Ethyl Acetate            | 15-MAY-07 17:26  | 0.54   | 17.    | µg/m³             |          | 1             | 1.5               |
|                          | 113-MAI-0/ 1/:26 | 0.273  | ND     | ppb v/v           | i        | 1             | 0.5               |



Form RLIMS63A-V1.4 05180709005401

Page 13



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 18-MAY-07 09:00 Client Name.....: Weston Solutions, Inc.

DCL Sample Name...: 07E02477 DCL Report Group. .: 07E-0383-01

| Analyte                   | Date<br>Analyzed | MDL    | Result            | Units             | Qual. | Dilution        | PQL        |
|---------------------------|------------------|--------|-------------------|-------------------|-------|-----------------|------------|
| Ethyl Acetate             | 15-MAY-07 17:26  | 0.98   | ND                | ug/m³             |       | 1               | 1.8        |
| Hexane                    | 15-MAY-07 17:26  | 0.121  | 10.               | ppb v/v           |       | 1 1             | 0.5        |
| Hexane                    | 15-MAY-07 17:26  | 0.43   | 36.               | µg/m³             |       | 1 1             | 1.8        |
| Chloroform                | 15-MAY-07 17:26  | 0.115  | 0.55              | ppb v/v           |       | 1 1             | 0.5        |
| Chloroform                | 15-MAY-07 17:26  | 0.56   | 2.7               | µg/m³             |       | 1               | 2.4        |
| 1,1,1-Trichloroethane     | 15-MAY-07 17:26  | 0.0725 | ND                | ppb v/v           |       | 1 1             | 0.5        |
| 1,1,1-Trichloroethane     | 15-MAY-07 17:26  | 0.40   | ND                | µg/m³             |       | 1 1             | 2.7        |
| Carbon Tetrachloride      | 15-MAY-07 17:26  | 0.0657 | ND                | ppb v/v           |       | 1 1             |            |
| Carbon Tetrachloride      | 15-MAY-07 17:26  | 0.41   | ND                | ug/m³             |       | 1 1             | 0.5<br>3.1 |
| Benzene                   | 15-MAY-07 17:26  | 0.102  | 3.1               | v\v dag           |       |                 |            |
| Benzene                   | 15-MAY-07 17:26  | 0.33   | 10.               | ha/w3             |       | $\frac{1}{1}$   | 0.5        |
| Tetrahydrofuran           | 15-MAY-07 17:26  | 0.227  | ND                | ppb v/v           |       | 1 1             | 1.6        |
| Tetrahydrofuran           | 15-MAY-07 17:26  | 0.67   | ND                | nd/w3             |       | $+\frac{1}{1}+$ | 0.5        |
| 1,2-Dichloroethane        | 15-MAY-07 17:26  | 0.153  | ND                | ppb v/v           |       |                 | 1.5        |
| 1,2-Dichloroethane        | 15-MAY-07 17:26  | 0.62   | ND                | nd/m <sub>3</sub> |       | $\frac{1}{1}$   | 0.5        |
| Cyclohexane               | 15-MAY-07 17:26  | 0.120  | 3.0               | ppb v/v           |       |                 | 2.0        |
| Cyclohexane               | 15-MAY-07 17:26  | 0.41   | 10.               | hd/m3             |       | 1               | 0.5        |
| Trichloroethene           | 15-MAY-07 17:26  | 0.120  | ND                | y\v dag           |       | 1 1             | 1.7        |
| Trichloroethene           | 15-MAY-07 17:26  | 0.64   | ND                | ha/w <sub>3</sub> |       |                 | 0.5        |
| 1,2-Dichloropropane       | 15-MAY-07 17:26  | 0.123  | ND                | ppb v/v           |       | 1               | 2.7        |
| 1,2-Dichloropropane       | 15-MAY-07 17:26  | 0.57   | ND                | hd/w <sub>3</sub> |       | 1               | 0.5        |
| Bromodichloromethane      | 15-MAY-07 17:26  | 0.0779 | ND                | bbp n\n           |       | 1               | 2.3        |
| Bromodichloromethane      | 15-MAY-07 17:26  | 0.52   | ND                | hd/w <sub>3</sub> |       | 1               | 0.5        |
| Heptane                   | 15-MAY-07 17:26  | 0.101  | 6.7               | ppb v/v           |       | 1               | 3.3        |
| Heptane                   | 15-MAY-07 17:26  | 0.41   | 27.               |                   |       | 1               | 0.5        |
| cis-1,3-Dichloropropene   | 15-MAY-07 17:26  | 0.106  | ND                | µg/m³             |       | 1               | 2.0        |
| cis-1,3-Dichloropropene   | 15-MAY-07 17:26  | 0.48   | ND                | ppb v/v           |       | 1               | 0.5        |
| 4-Methyl-2-Pentanone      | 15-MAY-07 17:26  | 0.116  | 1.0               | µg/m³             |       | 1               | 2.3        |
| 4-Methyl-2-Pentanone      | 15-MAY-07 17:26  | 0.48   |                   | ppb v/v           |       | 1               | 0.5        |
| Toluene                   | 15-MAY-07 17:26  | 0.115  | <u>4.1</u><br>9.1 | µg/m³             |       | 1               | 2.0        |
| Toluene                   | 15-MAY-07 17:26  | 0.43   | 34.               | v/v dqq           |       | 1               | 0.5        |
| trans-1,3-Dichloropropene | 15-MAY-07 17:26  | 0.130  |                   | µg/m³             |       | 1               | 1.9        |
| trans-1,3-Dichloropropene | 15-MAY-07 17:26  | 0.59   | ND                | v/v dag           |       | 1               | 0.5        |
| 1,1,2-Trichloroethane     | 15-MAY-07 17:26  | 0.0972 | ND                | nd/m3             |       | 1               | 2.3 -      |
| 1,1,2-Trichloroethane     | 15-MAY-07 17:26  | 0.53   | ND                | ppb v/v           |       | 1               | 0.5        |
| Tetrachloroethene         | 15-MAY-07 17:26  | 0.0847 | ND                | µg/m³             |       | 1               | 2.7        |
| Tetrachloroethene         | 15-MAY-07 17:26  | 0.57   | 23.               | ppb v/v           |       | 1               | 0.5        |
| 2-Hexanone                | 15-MAY-07 17:26  | 0.37   | 150               | µg/m³             |       | 1               | 3.4        |
| 2-Hexanone                | 15-MAY-07 17:26  | 0.56   | ND                | ppb v/v           |       | 1               | 0.5        |
| Dibromochloromethane      | 15-MAY-07 17:26  | 0.0792 | ND                | µg/m³             |       | 1               | 2.0        |
| Dibromochloromethane      | 15-MAY-07 17:26  | 0.67   | ND                | ppb v/v           |       | 1               | 0.5        |
| 1,2-Dibromoethane         | 15-MAY-07 17:26  |        | ND                | ug/m³             |       | 1               | 4.2        |
| 1,2-Dibromoethane         | 15-MAY-07 17:26  | 0.119  | ND                | ppb v/v           |       | 1               | 0.5        |
| Chlorobenzene             | 15-MAY-07 17:26  | 0.91   | ND                | µg/m³             |       | 1               | 3.8        |
| Chlorobenzene             | 15-MAY-07 17:26  | 0.0882 | ND                | ppb v/v           |       | 1               | 0.5        |
| Ethylbenzene              | 15-MAY-07 17:26  | 0.41   | ND                | µg/m³             |       | 1               | 2.3        |
| Ethylbenzene              | 15-MAY-07 17:26  | 0.150  | 4.8               | v/v dqq           |       | 1               | 0.5        |
| m,p-Xylene                | 15-MAY-07 17:26  | 0.65   | 21.               | ug/m³             |       | 1               | 2.2        |
| n,p-Xylene                | 15-MAY-07 17:26  | 0.213  | 5.6               | v/v dqq           |       | 1               | 1.0        |
| o-Xylene                  | 15 MAY 07 17 06  | 0.92   | 24.               | ug/m³             |       | 1               | 4.3        |
| o-Xylene                  | 15-MAY-07 17:26  | 0.113  | 2.8               | v/v dqq           |       | 1               | 0.5        |
| Styrene                   | 15-MAY-07 17:26  | 0.49   | 12.               | µg/m³             |       | 1               | 2.2        |
| Styrene                   | 15-MAY-07 17:26  | 0.0748 | 0.34              | v/v dqq           | J     | 1               | 0.5        |
| Bromoform                 | 15-MAY-07 17:26  | 0.32   | 1.5               | µg/m³             | J     | 1               | 2.1        |
| Bromoform                 | 15-MAY-07 17:26  | 0.0884 | ND                | ppb v/v           |       | 1               | 0.5        |
| 1,1,2,2-Tetrachloroethane | 15-MAY-07 17:26  | 0.90   | ND                | μg/m³             |       | 1               | 5.1        |
| 1,1,2,2-Tetrachioroethane | 15-MAY-07 17:26  | 0.108  | ND                | ppb v/v           |       | 1               | 0.5        |
| Benzyl Chloride           | 15-MAY-07 17:26  | 0.74   | ND                | µg/m³             |       | 1               | 3.4        |
| CITEAT CUITOLIGE          | 15-MAY-07 17:26  | 0.136  | ND                | ppb v/v           |       | 1               | 0.5        |



Form RLIMS63A-V1.4 05180709005401

Page 14



# SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 18-MAY-07 09:00 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02477 DCL Report Group..: 07E-0383-01

#### Analytical Results

| Analyte                | Date<br>Analyzed |        | Result | Units             | Qual. | Dilution                                         | PQL        |
|------------------------|------------------|--------|--------|-------------------|-------|--------------------------------------------------|------------|
| Benzyl Chloride        | 15-MAY-07 17:26  | 0.70   | ND     | ug/m³             | E     | 1                                                | 2.6        |
| 4-Ethyl toluene        | 15-MAY-07 17:26  | 0.0983 | 0.68   | v\v dag           |       | +                                                | 0.5        |
| 4-Ethyl toluene        | 15-MAY-07 17:26  | 0.48   | 3.4    | ug/m³             |       | <del>                                     </del> |            |
| 1,3,5-Trimethylbenzene | 15-MAY-07 17:26  | 0.112  | 0.90   | ppb v/v           |       | 1 1                                              | 2.5        |
| 1,3,5-Trimethylbenzene | 15-MAY-07 17:26  | 0.55   | 4.4    | µg/m³             |       | + +                                              | 0.5        |
| 1,2,4-Trimethylbenzene | 15-MAY-07 17:26  | 0.117  | 3.5    | ppb v/v           |       | 1 1                                              | 2.5        |
| 1,2,4-Trimethylbenzene | 15-MAY-07 17:26  | 0.58   | 17.    | µg/m³             |       | + + +                                            | 0.5        |
| 1,3-Dichlorobenzene    | 15-MAY-07 17:26  | 0.120  | ND     | ppb v/v           |       | 1 1                                              | 2.5        |
| 1,3-Dichlorobenzene    | 15-MAY-07 17:26  | 0.72   | ND     | nd/m3             |       | <del>                                     </del> | 0.5        |
| 1,4-Dichlorobenzene    | 15-MAY-07 17:26  | 0.0987 | 4.2    | y\v dqq           |       | 1                                                | 3.0        |
| 1,4-Dichlorobenzene    | 15-MAY-07 17:26  | 0.59   | 25.    | ha\w <sub>3</sub> |       | + + +-+-                                         | 0.5        |
| 1,2-Dichlorobenzene    | 15-MAY-07 17:26  | 0.0851 | ND     | v\v daa           |       | +                                                | 3.0        |
| 1,2-Dichlorobenzene    | 15-MAY-07 17:26  | 0.51   | ND     | hd/w <sub>3</sub> |       | + + +                                            | 0.5        |
| 1,2,4-Trichlorobenzene | 15-MAY-07 17:26  | 0.115  | ND     | v\v dag           |       | <del>                                     </del> | 3.0        |
| 1,2,4-Trichlorobenzene | 15-MAY-07 17:26  | 0.85   | ND     | hd/w <sub>3</sub> |       | 1 1                                              | 0.5        |
| lexachlorobutadiene    | 15-MAY-07 17:26  | 0.119  | ND     |                   |       | <del>    -   -   -   -   -   -   -   -  </del>   | 3.7        |
| Hexachlorobutadiene    | 15-MAY-07 17:26  | 1.3    | ND     | ppb v/v           |       | <del>                                     </del> | 0.5<br>5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)     | Date<br>Analyzed | Result | Units    | Oual. | Dilution                                         |
|-----------------------------|------------------|--------|----------|-------|--------------------------------------------------|
| Propene, hexafluoro-(3.98)  | 15-MAY-07 17:26  | 11.    | ppb v/v  | J     | 1                                                |
| Isobutane(4.53)             | 15-MAY-07 17:26  | 7.1    | v/v dag  | J     | 1 1                                              |
| Ethanol (5.29)              | 15-MAY-07 17:26  | 9.4    | v\v dag  | J     | <del>                                     </del> |
| Isopropyl Alcohol(5.93)     | 15-MAY-07 17:26  |        | v\v dag  | J     | <del>                                     </del> |
| Pentane (6.12)              | 15-MAY-07 17:26  | 7.2    | ppb v/v  | J     | 1 1                                              |
| Cyclobutane, methyl-(7.47)  | 15-MAY-07 17:26  | 3.1    | ppb v/v  | J     | 1                                                |
| Pentane, 2-methyl-(7.56)    | 15-MAY-07 17:26  | 5.0    | ppb v/v  | J     | 1                                                |
| CYCLOPENTANE, METHYL-(8.98) | 15-MAY-07 17:26  | 4.3    | v\v dqq  | . J   | 1                                                |
| Hexane, 3-methyl-(10.17)    | 15-MAY-07 17:26  | 3.3    | v\v dag. | J     | 1 1                                              |
| CYCLOHEXANE, METHYL-(11.36) | 15-MAY-07 17:26  | 5.9    | v\v daa  | J     | 1                                                |
| Octane(13.06)               | 15-MAY-07 17:26  | 3.0    | v\v dag  | J     | 1                                                |
| Nonane (15.13)              | 15-MAY-07 17:26  | 4.1    | v\v dag  | J     | 1                                                |
| Decane (17.00)              | 15-MAY-07 17:26  | 4.0    | v\v dag  | J     | 1                                                |
| Undecane (18.70)            | 15-MAY-07 17:26  | 5.2    | v\v dag  | J     | 1                                                |



# Form RLIMS63A-V1.4 05180709005401

Page 15



# SAMPLE ANALYSIS DATA SHEET

Date Printed..... 18-MAY-07 09:00

Client Name.....: Weston Solutions, Inc.

Client Ref Number...: 0055729

Sampling Site..... Behr VOC Plume PRP

Release Number....: 0055729

Date Received.....: 11-MAY-07 00:00

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: Not Applicable

Aliquot Weight/Volume: 200 mL

Net Weight/Volume...: Not Required

Client Sample Name: EPA-31-SS DCL Sample Name...: 07E02478 DCL Report Group..: 07E-0383-01

Matrix..... AIR

Date Sampled....: 09-MAY-07 00:00

Reporting Units...: ppb v/v

Report Basis....:

☒ As Received ☐ Dried

DCL Analysis Group: G074J010 Analysis Method...: TO-15 Instrument Type...: GC/MS VO Instrument ID....: 5972-0 Column Type.....: DB-1

X Primary ☐ Confirmation

| Analyte                  | Date<br>Analyzed                   | MDL    | Result   | Units             | Oual.                                            | Dilution      | POL        |
|--------------------------|------------------------------------|--------|----------|-------------------|--------------------------------------------------|---------------|------------|
| Propene                  | 15-MAY-07 18:59                    | 0.180  | 6.6      | v/v dag           |                                                  | 1             | 0.5        |
| Propene                  | 15-MAY-07 18:59                    | 0.31   | 11.      | na/w3             | <del>                                     </del> | $\frac{1}{1}$ | 0.86       |
| Dichlorodifluoromethane  | 15-MAY-07 18:59                    | 0.0669 | 0.61     | ppb v/v           | <del>                                     </del> | $\frac{1}{1}$ | 0.86       |
| Dichlorodifluoromethane  | 15-MAY-07 18:59                    | 0.33   | 3.0      | na/m3             | <b>—</b>                                         | 1             | 2.5        |
| Chloromethane            | 15-MAY-07 18:59                    | 0.249  | ND       | v\v dag           |                                                  | $\frac{1}{1}$ |            |
| Chloromethane            | 15-MAY-07 18:59                    | 0.51   | ND       | nd/w3             |                                                  | $\frac{1}{1}$ | 0.5<br>1.0 |
| Freon 114                | 15-MAY-07 18:59                    | 0.156  | ND       | ppb v/v           |                                                  | $\frac{1}{1}$ | 0.5        |
| Freon 114                | 15-MAY-07 18:59                    | 1.1    | ND       | ug/m³             |                                                  | 1             |            |
| Vinyl Chloride           | 15-MAY-07 18:59                    | 0.301  | ND       | v\v daa           |                                                  |               | 3.5        |
| Vinyl Chloride           | 15-MAY-07 18:59                    | 0.77   | ND       | nd/w3             |                                                  |               | 0.5        |
| 1,3-Butadiene            | 15-MAY-07 18:59                    | 0.346  | ND       | v/v daa           |                                                  | 1             | 1.3        |
| 1,3-Butadiene            | 15-MAY-07 18:59                    | 0.77   | ND       | nd/w <sub>3</sub> |                                                  | 1             | 0.5        |
| Bromomethane             | 15-MAY-07 18:59                    | 0.215  | 0.64     | ppb v/v           |                                                  | 1             | 1.1        |
| Bromomethane             | 15-MAY-07 18:59                    | 0.83   | 2.5      | ha/w <sub>3</sub> |                                                  | 1             | 0.5        |
| Chloroethane             | 15-MAY-07 18:59                    | 0.388  | ND ND    |                   |                                                  | 1             | 1.9        |
| Chloroethane             | 15-MAY-07 18:59                    | 1.0    | ND<br>ND | ppb v/v           |                                                  | 1             | 0.5        |
| Freon 11                 | 15-MAY-07 18:59                    | 0.0921 | 0.32     | µg/m³             |                                                  | 1             | 1.3 -      |
| Freon 11                 | 15-MAY-07 18:59                    | 0.52   | 1.8      | ppb v/v           | J                                                | 11            | 0.5        |
| cis-1,2-Dichloroethene   | 15-MAY-07 18:59                    | 0.102  | ND ND    | ug/m³             | J                                                | 11            | 2.8        |
| cis-1,2-Dichloroethene   | 15-MAY-07 18:59                    | 0.40   | ND       | ppb v/v           |                                                  | 1             | 0.5        |
| Carbon Disulfide         | 15-MAY-07 18:59                    | 0.111  | 4.2      | µg/m³             |                                                  | 1             | 2.0        |
| Carbon Disulfide         | 15-MAY-07 18:59                    | 0.35   | 13.      | v/v dqq           |                                                  | 1             | 0.5        |
| Freon 113                | 15-MAY-07 18:59                    | 0.0950 |          | µg/m³             | ·                                                | 1             | 1.6        |
| Freon 113                | 15-MAY-07 18:59                    | 0.0330 | ND<br>ND | v/v dqq           |                                                  | 1             | 0.5        |
| Acetone                  | 15-MAY-07 18:59                    | 0.113  | 15.      | µg/m³             |                                                  | 1             | 3.8        |
| Acetone                  | 15-MAY-07 18:59                    | 0.27   |          | v/v dqq           |                                                  | 1             | 0.5        |
| Methylene Chloride       | 15-MAY-07 18:59                    | 0.168  | 35.      | ug/m³             |                                                  | 1             | 1.2        |
| Methylene Chloride       | 15-MAY-07 18:59                    | 0.168  | ND       | v/v dqq           |                                                  | 1             | 0.5        |
| trans-1,2-Dichloroethene | 15-MAY-07 18:59                    | 0.38   | ND       | ug/m³             |                                                  | 1             | 1.7        |
| trans-1,2-Dichloroethene | 15-MAY-07 18:59                    | 0.118  | ND       | ppb v/v           |                                                  | 1             | 0.5        |
| 1,1-Dichloroethane       | 15-MAY-07 18:59                    | 0.47   | ND       | ug/m³             |                                                  | 1             | 2.0        |
| 1,1-Dichloroethane       | 15-MAY-07 18:59                    | 0.47   | ND       | v/v dqq           |                                                  | 1             | 0.5        |
| Methyl t-Butyl Ether     | 15-MAY-07 18:59                    | 0.47   | ND       | µg/m³             |                                                  | 1             | 2.0        |
| Methyl t-Butyl Ether     | 15-MAY-07 18:59                    |        | ND       | ppb v/v           |                                                  | 1             | 0.5        |
| Vinyl Acetate            | 15-MAY-07 18:59                    | 0.53   | ND       | nd/m3             |                                                  | 1             | 1.8        |
| Vinyl Acetate            | 15-MAY-07 18:59                    | 0.133  | ND       | v/v dqq           |                                                  | 1             | 0.5        |
| 1,1-Dichloroethene       | 15-MAY-07 18:59                    | 0.47   | ND       | µg/m³             |                                                  | 1             | 1.8        |
| 1,1-Dichloroethene       | 15-MAY-07 18:59                    | 0.109  | ND       | v/v dqq           |                                                  | 1             | 0.5        |
| 2-Butanone               | 15-MAY-07 18:59                    | 0.43   | ND       | µg/m³             |                                                  | 1             | 2.0        |
| 2-Butanone               | 15-MAY-07 18:59                    | 0.182  | 4.0      | ppb v/v           |                                                  | 1             | 0.5        |
| Ethyl Acetate            | 15-MAY-07 18:59<br>15-MAY-07 18:59 | 0.54   | 12.      | ug/m³             |                                                  | 1             | 1.5        |
|                          | 113-MAI-0/ 18:59                   | 0.273  | ND       | ppb v/v           |                                                  | 1             | 0.5        |



Form RLIMS63A-V1.4 05180709005401

Page 16



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 18-MAY-07 09:00 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02478 DCL Report Group..: 07E-0383-01

| Analyte                                                                | Date<br>Analyzed                   | MDL    | Result   | Units             | Qual.       | Dilution                                         | PQL        |
|------------------------------------------------------------------------|------------------------------------|--------|----------|-------------------|-------------|--------------------------------------------------|------------|
| Ethyl Acetate                                                          | 15-MAY-07 18:59                    | 0.98   | ND       | ug/m³             |             | 1                                                | 1.8        |
| Hexane                                                                 | 15-MAY-07 18:59                    | 0.121  | 8.6      | ppb v/v           |             | 1 1                                              | 0.5        |
| Hexane                                                                 | 15-MAY-07 18:59                    | 0.43   | 30.      | µg/m³             |             | 1 1                                              | 1.8        |
| Chloroform                                                             | 15-MAY-07 18:59                    | 0.115  | ND       | ppb v/v           |             | 1 1                                              | 0.5        |
| Chloroform                                                             | 15-MAY-07 18:59                    | 0.56   | ND       | µg/m³             |             | 1 1                                              | 2.4        |
| 1,1,1-Trichloroethane                                                  | 15-MAY-07 18:59                    | 0.0725 | ND       | ppb v/v           |             | $\frac{1}{1}$                                    | 0.5        |
| 1,1,1-Trichloroethane                                                  | 15-MAY-07 18:59                    | 0.40   | ND       | hd/m3             |             |                                                  | 2.7        |
| Carbon Tetrachloride                                                   | 15-MAY-07 18:59                    | 0.0657 | ND       | ppb v/v           |             | 1 1                                              |            |
| Carbon Tetrachloride                                                   | 15-MAY-07 18:59                    | 0.41   | ND       | nd/m3             |             | 1 1                                              | 0.5<br>3.1 |
| Benzene                                                                | 15-MAY-07 18:59                    | 0.102  | 4.1      | ppb v/v           |             | <del>                                     </del> |            |
| Benzene                                                                | 15-MAY-07 18:59                    | 0.33   | 13.      | hd/m3             |             | $\frac{1}{1}$                                    | 0.5        |
| Tetrahydrofuran                                                        | 15-MAY-07 18:59                    | 0.227  | ND       | ppb v/v           |             | $\frac{1}{1}$                                    | 1.6        |
| Tetrahydrofuran                                                        | 15-MAY-07 18:59                    | 0.67   | ND       | hd/m3             |             | $+\frac{1}{1}$                                   | 0.5        |
| 1,2-Dichloroethane                                                     | 15-MAY-07 18:59                    | 0.153  | ND       | ppb v/v           |             |                                                  | 1.5        |
| 1,2-Dichloroethane                                                     | 15-MAY-07 18:59                    | 0.62   | ND       | hd/m3             |             | 1 1                                              | 0.5        |
| Cyclohexane                                                            | 15-MAY-07 18:59                    | 0.120  | 3.4      | v/v dgg           |             | 1                                                | 2.0        |
| Cyclohexane                                                            | 15-MAY-07 18:59                    | 0.41   | 12.      |                   |             | 1                                                | 0.5        |
| Trichloroethene                                                        | 15-MAY-07 18:59                    | 0.120  | ND       | µg/m³             |             | 1                                                | 1.7        |
| Trichloroethene                                                        | 15-MAY-07 18:59                    | 0.64   | ND       | ppb v/v           | *           | 1                                                | 0.5        |
| 1,2-Dichloropropane                                                    | 15-MAY-07 18:59                    | 0.123  | ND ND    | µg/m³             |             | 1                                                | 2.7        |
| 1,2-Dichloropropane                                                    | 15-MAY-07 18:59                    | 0.57   |          | ppb v/v           |             | 1                                                | 0.5        |
| Bromodichloromethane                                                   | 15-MAY-07 18:59                    | 0.0779 | ND       | µg/m³             |             | 11                                               | 2.3        |
| Bromodichloromethane                                                   | 15-MAY-07 18:59                    | 0.0779 | ND       | ppb v/v           |             | 1                                                | 0.5        |
| Heptane                                                                | 15-MAY-07 18:59                    | 0.52   | ND       | μg/m³             |             | 1                                                | 3.3        |
| Heptane                                                                | 15-MAY-07 18:59                    |        | 6.1      | v/v dqq           |             | 1                                                | 0.5        |
| cis-1,3-Dichloropropene                                                | 15-MAY-07 18:59                    | 0.41   | 25.      | ha/w3             |             | 1                                                | 2.0        |
| cis-1,3-Dichloropropene                                                | 15-MAY-07 18:59                    | 0.106  | ND       | ppb v/v           |             | 1                                                | 0.5        |
| 4-Methyl-2-Pentanone                                                   | 15-MAY-07 18:59                    | 0.48   | ND       | µg/m³             |             | 1                                                | 2.3        |
| 4-Methyl-2-Pentanone                                                   | 15-MAY-07 18:59<br>15-MAY-07 18:59 | 0.116  | 0.52     | ppb v/v           |             | 1                                                | 0.5        |
| Foluene                                                                | 15-MAY-07 18:59                    | 0.48   | 2.1      | μg/m³             |             | 1                                                | 2.0        |
| Foluene                                                                |                                    | 0.115  | 11.      | ppb v/v           |             | 1                                                | 0.5        |
| crans-1,3-Dichloropropene                                              | 15-MAY-07 18:59                    | 0.43   | 41.      | µg/m³             |             | 1                                                | 1.9        |
| crans-1,3-Dichloropropene                                              | 15-MAY-07 18:59                    | 0.130  | ND       | ppb v/v           |             | 1                                                | 0.5        |
| L,1,2-Trichloroethane                                                  | 15-MAY-07 18:59                    | 0.59   | ND       | μg/m³             |             | 1                                                | 2.3 -      |
| L,1,2-Trichloroethane                                                  | 15-MAY-07 18:59                    | 0.0972 | ND       | ppb v/v           |             | 1                                                | 0.5        |
| Cetrachloroethene                                                      | 15-MAY-07 18:59                    | 0.53   | ND       | μg/m³             |             | 1                                                | 2.7        |
| Tetrachloroethene                                                      | 15-MAY-07 18:59                    | 0.0847 | 0.52     | ppb v/v           |             | 1                                                | 0.5        |
| 2-Hexanone                                                             | 15-MAY-07 18:59                    | 0.57   | 3.5      | μg/m³             |             | 1                                                | 3.4        |
| 2-Hexanone                                                             | 15-MAY-07 18:59                    | 0.136  | ND       | v/v dqq           |             | 1                                                | 0.5        |
| Dibromochloromethane                                                   | 15-MAY-07 18:59                    | 0.56   | ND       | µg/m³             |             | 1                                                | 2.0        |
| Dibromochloromethane                                                   | 15-MAY-07 18:59                    | 0.0792 | ND       | v/v dqq           |             | 1                                                | 0.5        |
| .,2-Dibromoethane                                                      | 15-MAY-07 18:59                    | 0.67   | ND       | µg/m³             |             | 1                                                | 4.2        |
| .,2-Dibromoethane                                                      | 15-MAY-07 18:59                    | 0.119  | ND       | v/v dag           |             | 1                                                | 0.5        |
|                                                                        | 15-MAY-07 18:59                    | 0.91   | ND       | µg/m³             |             | 1.                                               | 3.8        |
| Chlorobenzene                                                          | 15-MAY-07 18:59                    | 0.0882 | ND       | ppb v/v           |             | 1                                                | 0.5        |
| hlorobenzene                                                           | 15-MAY-07 18:59                    | 0.41   | ND       | µq/m³             |             | 1                                                | 2.3        |
| thylbenzene                                                            | 15-MAY-07 18:59                    | 0.150  | 4.0      | v\v dag           |             | 1                                                | 0.5        |
| thylbenzene                                                            | 15-MAY-07 18:59                    | 0.65   | 17.      | µg/m³             |             | 1                                                | 2.2        |
| n,p-Xylene                                                             | 15-MAY-07 18:59                    | 0.213  | 6.1      | ppb v/v           |             | 1                                                | 1.0        |
| ,p-Xylene                                                              | 15-MAY-07 18:59                    | 0.92   | 26.      | µg/m³             |             | 1 -                                              | 4.3        |
| -Xylene                                                                | 15-MAY-07 18:59                    | 0.113  | 5.7      | ppb v/v           |             | 1                                                | 0.5        |
| -Xylene                                                                | 15-MAY-07 18:59                    | 0.49   | 25.      | µg/m³             |             | 1                                                |            |
| tyrene                                                                 | 15-MAY-07 18:59                    | 0.0748 | 0.84     | ppb v/v           |             | 1                                                | 0.5        |
| tyrene                                                                 | 15-MAY-07 18:59                    | 0.32   | 3.6      | hg/w <sub>3</sub> |             |                                                  |            |
| romoform                                                               | 15-MAY-07 18:59                    | 0.0884 | 0.56     | ppb v/v           | <del></del> | 1                                                | 2.1        |
| romoform                                                               | 15-MAY-07 18:59                    | 0.90   | 5.7      | nd/w3             |             |                                                  | 0.5        |
| TOMOTOTIII                                                             |                                    |        | J . ,    | MM/III            | 1           | 1                                                | 5.1        |
| ,1,2,2-Tetrachloroethane                                               | 15-MAY-07 18:59                    | 0.108  | ND       |                   |             |                                                  |            |
| ,1,2,2-Tetrachloroethane<br>,1,2,2-Tetrachloroethane<br>enzyl Chloride | 15-MAY-07 18:59<br>15-MAY-07 18:59 | 0.108  | ND<br>ND | ppb v/v           |             | 1 1                                              | 0.5        |



Form RLIMS63A-V1.4 05180709005401

Page 17



# SAMPLE ANALYSIS DATA SHEET

Date Printed....: 18-MAY-07 09:00 Client Name..... : Weston Solutions, Inc.

DCL Sample Name...: 07E02478 DCL Report Group..: 07E-0383-01

#### Analytical Results

| Analyte                | Date<br>Analyzed | MDL    | Result | Units   | Qual.    | Dilution | PQL |
|------------------------|------------------|--------|--------|---------|----------|----------|-----|
| Benzyl Chloride        | 15-MAY-07 18:59  | 0.70   | ND     | ug/m³   | guuz.    | 1        |     |
| 4-Ethyl toluene        | 15-MAY-07 18:59  | 0.98   | 35.    | v\v daa |          | 10       | 2.6 |
| 4-Ethyl toluene        | 15-MAY-07 18:59  | 4.8    | 170.   |         | <u> </u> | 10       | 5.0 |
| 1,3,5-Trimethylbenzene | 15-MAY-07 18:59  | 1.1    | 100    | hay n/a |          | 10       | 25. |
| 1,3,5-Trimethylbenzene | 15-MAY-07 18:59  | 5.5    | 500    |         |          | 10       | 5.0 |
| 1,2,4-Trimethylbenzene | 15-MAY-07 18:59  | 1.2    | 300    | ug/m³   |          | 10       | 25. |
| 1,2,4-Trimethylbenzene | 15-MAY-07 18:59  | 5.8    | 1500   | ppb v/v | E        | 10       | 5.0 |
| 1,3-Dichlorobenzene    | 15-MAY-07 18:59  | 0.120  | ND     | µg/m³   | E        | 10       | 25. |
| 1,3-Dichlorobenzene    | 15-MAY-07 18:59  | 0.72   | ND     | ppb v/v |          | 1 1      | 0.5 |
| 1,4-Dichlorobenzene    | 15-MAY-07 18:59  | 0.0987 | ND     | µg/m³   |          | 1.       | 3.0 |
| 1,4-Dichlorobenzene    | 15-MAY-07 18:59  | 0.59   | ND     | ppb v/v |          | 1        | 0.5 |
| 1,2-Dichlorobenzene    | 15-MAY-07 18:59  | 0.0851 | ND     | µg/m³   |          | 1 1      | 3.0 |
| 1,2-Dichlorobenzene    | 15-MAY-07 18:59  | 0.51   |        | ppb v/v |          | 1        | 0.5 |
| 1,2,4-Trichlorobenzene | 15-MAY-07 18:59  | 0.115  | ND     | µg/m³   |          | 1        | 3.0 |
| 1,2,4-Trichlorobenzene | 15-MAY-07 18:59  | 0.115  | ND     | ppb v/v |          | 1        | 0.5 |
| Hexachlorobutadiene    | 15-MAY-07 18:59  |        | ND     | µg/m³   |          | 1        | 3.7 |
| Hexachlorobutadiene    | 15-MAY-07 18:59  | 0.119  | ND     | ppb v/v |          | 1        | 0.5 |
|                        | 113-MAI-07 18:59 | 1.3    | ND     | μg/m³   |          | 1        | 5.3 |

# Tentatively Identified Compound Results

| Analyte(Retention Time)               | Date<br>Analyzed | Result | Units   | Oual        | Dilution                                         |
|---------------------------------------|------------------|--------|---------|-------------|--------------------------------------------------|
| Ethane, 1-chloro-1,1-difluoro-(4.38)  | 15-MAY-07 18:59  | 200    | v/v daa | J           | DITUCION                                         |
| Ethanol (5.26)                        | 15-MAY-07 18:59  | 7.6    | v\v dag | J           | 1 1                                              |
| Benzene, 1-ethyl-3-methyl-(16.23)     | 15-MAY-07 18:59  | 83.    | bpp A/A | J           | 1                                                |
| Benzene, 1-ethyl-2-methyl-(16.60)     | 15-MAY-07 18:59  | 44.    | ppb v/v | J           | 1 1                                              |
| Decane (17.01)                        | 15-MAY-07 18:59  | 50.    | y\v dag | J           | 1                                                |
| Benzene, (2-methylpropyl)-(17.15)     | 15-MAY-07 18:59  | 22.    | v\v dag | J           | <del>                                     </del> |
| Benzene, 1-methyl-3-(1-methyle(17.33) | 15-MAY-07 18:59  | 20.    | v\v dag | <del></del> | 1                                                |
| Benzene, 1,2,3-trimethyl-(17.41)      | 15-MAY-07 18:59  | 75.    | v\v dag | J           | 1                                                |
| Benzene, 1-methyl-3-propyl-(17.86)    | 15-MAY-07 18:59  | 34.    | v\v dag | J           | 1                                                |
| Benzene, 4-ethyl-1,2-dimethyl-(17.96) | 15-MAY-07 18:59  | 43.    | v\v dag | J           | 1                                                |
| Decane, 2-methyl-(18.13)              | 15-MAY-07 18:59  | 21.    | v\v dag |             | 1                                                |
| Benzene, 2-ethyl-1,4-dimethyl-(18.33) | 15-MAY-07 18:59  | 23.    | v\v dag | <del></del> | •1                                               |
| Undecane (18.71)                      | 15-MAY-07 18:59  | 40.    | v\v dag |             | 1                                                |

# BEHR VOC PLUME SITE DAYTON, OHIO DATA VALIDATION REPORT

**Date:** August 7, 2007

Laboratory: DataChem Laboratories, Inc. (DataChem), Salt Lake City, Utah

Laboratory SDG #/Set ID #: BEHR/07E-0388-01

Data Validation Performed By: Lisa Graczyk, Dynamac Corporation (Dynamac),

subcontractor to Weston Solutions, Inc. (Weston)

Weston Analytical Work Order #/TDD #: 20405.016.003.0121.00/S05-0612-007

This data validation report has been prepared by Dynamac, a Weston subcontractor, under the START III Region V contract. This report documents the data validation of air samples collected for the Behr VOC Plume Site that were analyzed for Volatile Organic Compounds (VOC) by U.S. Environmental Protection Agency (U.S. EPA) method TO-15. The data validation was conducted in general accordance with the U.S. EPA "Contract Laboratory Program National Functional Guidance for Organic Data Review" dated October 1999.

#### **VOCs in Air by U.S. EPA Method TO15**

#### 1. Samples

The following table summarizes the samples for which this data validation is being conducted.

| Samples   | <u>Lab ID</u> | <u>Matrix</u> | Date<br>Collected | <u>Date</u><br><u>Prepared</u> | <u>Date</u><br><u>Analyzed</u> |
|-----------|---------------|---------------|-------------------|--------------------------------|--------------------------------|
| EPA-32-SS | 07E2532       | Air           | 05/10/07          | NA                             | 05/15/07                       |
| EPA-33-SS | 07E2533       | Air           | 05/10/07          | NA                             | 05/15/07                       |
| EPA-34-SS | 07E2534       | Air           | 05/10/07          | NA                             | 05/15/07                       |

#### 2. Holding Times

The samples were analyzed within the required holding time limit of 30 days from sample collection in accordance with method TO-15.

#### 3. Instrument Performance Check

The instrument performance check using bromofluorobenzene (BFB) standard met the ion abundance criteria specified in method TO-15.

Laboratory WO #: BEHR/07E-0388-01

### 4. <u>Initial Calibration</u>

For the initial calibration, the percent relative standard deviations (%RSD) for all compounds were less than 30 percent. The average relative response factors were all greater than 0.05.

# 5. <u>Continuing Calibration</u>

The percent differences in the continuing calibration standard for all target compounds were within the control limit of less than or equal to 25 percent.

#### 6. Blanks

The method blank associated with the samples was free of target compound contamination.

#### 7. <u>Surrogates</u>

The 4-bromofluorobenzene surrogate spike recoveries in the samples were within the quality control (QC) limits.

#### 8. <u>Laboratory Control Sample (LCS)</u>

The LCS recoveries and LCS duplicate recoveries were within the laboratory-established QC limits of 70 to 130 percent recovery except for the following compound: hexachlorobutadiene. Because this compound was detected high and was not detected in the samples, no qualifications are required.

#### 9. Internal Standard Results

The internal standard area counts in the samples were within -50 percent to +100 percent of the area counts of the associated continuing calibration standard. The retention time of the internal standards did not vary more than  $\pm 30$  seconds from the retention time of the associated continuing calibration standard.

Data Validation Report Behr VOC Plume Site DataChem Laboratories

Laboratory WO #: BEHR/07E-0388-01

# 10. Target Compound Identification

A spot-check was performed of the mass spectra for detected compounds. The spot-check confirmed compound identification. DataChem appropriately flagged those results detected above the method detection limit but below the quantitation limit as "J" or estimated.

Data Validation Report Behr VOC Plume Site DataChem Laboratories Laboratory WO #: BEHR/07E-0388-01

# **ATTACHMENT**

# DATACHEM LABORATORIES RESULTS SUMMARY